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ABSTRACT

Obstruents are very important acoustical events (i.e., abrupt-

consonantal landmarks) in the speech signal. This paper

presents the use of novel Spectral Transition Measure (STM)

to locate the obstruents in the continuous speech signal. The

problem of obstruent detection involves detection of pho-

netic boundaries associated with obstruent sounds. In this

paper, we propose use of STM information derived from

state-of-the-art Mel Frequency Cepstral Coefficients (MFCC)

feature set and newly developed feature set, viz., MFCC-

TMP (which uses Teager Energy Operator (TEO) to exploit

implicitly Magnitude and Phase information in the MFCC

framework) for obstruent detection. The key idea here is to

exploit capabilities of STM to capture high dynamic transi-

tional characteristics associated with obstruent sounds. The

experimental setup is developed on entire TIMIT database.

For 20 ms agreement (tolerance) duration, obstruent detec-

tion rate is found to be 97.59 % with 17.65 % false accep-

tance using state-of-the-art MFCC-STM and 96.42 % with

12.88 % false acceptance using MFCC-TMP-STM. Finally,

STM-based features along with static representation (i.e.,

MFCC-STM and MFCC-TMP-STM) are evaluated for phone

recognition task.

Index Terms— Mel frequency cepstral coefficients, ob-

struents, spectral transition measure, Teager Energy Operator.

1. INTRODUCTION

Speech signal can be classified into three categories, viz., ob-

struent, sonorant and silence, based on the characteristics of

speech production mechanism. All the sonorants are voiced

by nature whereas obstruents are voiced as well as unvoiced

[1]. Obstruents are produced by a constriction of articulators

while air escapes from the lungs. They are typically spanned

over different place of articulation from bilabial to glottal area

and classified based on manner of articulation, viz., stop (or

plosive), affricates and fricatives [1].

Authors would like to thank Department of Electronics and Information
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Spectral features such as Spectral Centre of Gravity

(SCG), energy in different frequency bands, formant tran-

sitions are also being used for recognition of place and man-

ner of articulation for production of obstruents [2]. Earlier

studies in the analysis of obstruents involved use of temporal

and spectral (formant)-based information to detect place and

manner of articulation. Fricatives-affricates are distinguished

by features such as silence duration, frication duration, rise

time, amplitude rise time [3]- [4]. For voiced plosive and

fricative discrimination, zero-crossing rate and Root Means

Square (RMS) energy were exploited [5]. In this paper, STM

information is exploited to locate the obstruents. STM was

originally proposed for syllable perception [6], then it was

modified in the context of the phone boundary detection [7].

In this work, obsturent detection problem is posed as to detect

the phone boundaries associated with obstruents, which is an

extension of our earlier work [8]. As obstruents are produced

with obstruction in the vocal tract cavity, rapid variations of

spectral transition measure (STM) are expected in the vicinity

of obstruents. This capability of STM motivated the authors

to exploit it for obstruent detection task. Thus, novelty of

the present work is to exploit spectral transition information

(in order to capture the dynamics of the speech sound) for

detection of obstruents. Results are shown on state-of-the-

art MFCC (i.e., Mel Frequency Cepstral Coefficients) and

newly proposed feature set, viz., MFCC-TMP (i.e., Mel Fre-

quency Cepstral Coefficients to capture Magnitude and Phase

spectrum information via TEO).

2. MOTIVATION

Fig. 1 shows speech signal and corresponding phone-label

along with corresponding (narrowband) spectrogram for a

segment of an utterance taken from TIMIT database [9] (us-

ing wavesurfer software [10]). In Fig. 1, the spectrogram of

different obstruent sound exhibits the energy distribution in

different frequency regions. The arrows in Fig. 1, represents

the boundaries associated with obstruents sounds. Since ob-

struents sounds are having noise-like characteristics and being

impulsive in nature, it can be observed that there is sudden

change in spectral energy distribution which is evident via

spectrogram. From a speech production point of view, all the
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Fig. 1. (a) Time-domain speech signal, arrows in figure

represents the phonetic boundaries associated with obstruent

sounds, (b) corresponding spectrogram and (c) phone-labels

for a segment of an utterance, viz.,“She had your dark ” taken

from TIMIT test database [9].

sonorant sounds are voiced in nature and few obstruents are

unvoiced, vocal source information transits at few obstruent-

sonorant boundaries [11]. In addition, high constriction (for

plosive and affricates) and noise information (for fricative

and affricates) play dominant role for the obstruent sound

production. Furthermore, from speech perception viewpoint,

neural firing patterns are directly related to the speech spec-

trum as suggested by place theory of hearing [11]. Hence,

such transitional stimuli (i.e., at spectral change) indicate key

motivation for using STM to detect phone boundaries [6].

The STM is derived from the linear regression coefficient

information. Linear regression coefficients take large value

due to the rapidly varying cepstral information in the vicin-

ity of spectral transition and hence resulting STM is large

in the vicinity of spectral transition. Such high transitions

are the hypothesized phone boundaries [7]. From Fig. 1,

the phone boundaries associated with obstruent are subject to

higher spectral variation, resulting in higher Mean Square Er-

ror (MSE) in linear regression and which is reflected in STM

contour. STM, at frame, i, can be computed as a MSE for

linear regression [6], i.e.,

Ci =
1

D

D
∑

l=1

a2l (i), (1)

where Ci is STM at given frame i, D is the dimension of

the spectral feature vector (13 in this case) and al(i) is the

regression coefficient or the rate of change of the spectral in-

formation and defined as [6].

al(i) =

∑F
k=−F fl(k + i)k
∑I

k=−I k
2

, (2)

where i represents the current frame index, l represents the

coefficient index and F represents the number of frames (on

each side of the current frame) used to compute these regres-

sion coefficients, which is similar to delta-coefficients [12].

One of the motivation behind development of delta represen-

tation of cepstral parameter was to compensate the spectral

undershoot effect [13]. Since STM is derived using delta

cepstrum, the information represented in terms of STM may

capture perceptually-related linguistic information . We used

F = 25 for a 1 ms frame step corresponding to an interval

of 50 ms centered around the current frame at which C(i) is

computed. The rationale behind using 50 ms interval is be-

cause of the fact that the perceptually essential interval for

the perception of syllable (/CV/) unit is about 50 ms [6]. Fig.

2 exhibits that how STM can be used to detect obstruent in

the speech signal.
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Fig. 2. (a) Speech signal with manually marked obstruents

boundaries, (b) corresponding STM contour and a constant

threshold 0.4, (c) hypothetical obstruent boundaries which

crosses amplitude threshold (0.4), for the TIMIT sentence,

“She had your dark suit in greasy wash water all year”.

STM for each frame is computed using eq. (1) and thus

STM contour for an utterance is obtained. The peaks in this

contour indicate probable transition of phones. It is evident

from Fig. 2 shows that STM contour amplitude varies be-

tween 0 and 1. In addition, generally it is below 30 % to

40 % of its maximum value. As spectral variation is higher

around obstruent boundary (due to highly dynamic nature of

obstruent sounds), large STM peaks may correspond to the

obstruent boundaries. For a fixed threshold 0.4, hypothesized

obstruent boundary segments are shown in Fig. 2. The choice

of threshold plays an important role in the detection task. In

particular, a smaller threshold may result into many spuri-

ous boundaries and increases the false alarm, whereas higher

value of threshold may miss obstruent boundaries. Hence, it

would be worth to consider adjacent STM information, which

exploits the rapidness behavior of STM.

3. EXPERIMENTAL SETUP

3.1. Feature Extraction

The details of the feature extraction computation and feature

vector formation scheme is as follows. Step 1. Computation

of static features: First, spectral features (fi) is computed

from speech signal. The state-of-the-art feature set, viz., Mel

Frequency Cepstral Coefficients (MFCC) was used as one of

the speech representation. In addition, MFCC-TMP is used

as another feature representation. The key difference between

MFCC and MFCC-TMP is in the method for energy compu-

tation. In MFCC feature extraction, conventional l2 is com-

puted for subband energy computation. Hence, the energy of
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Fig. 3. Schematic block diagram of MFCC-TMP feature extraction. (After [14])

subband signal is equal to the sum of squared values of mag-

nitude spectrum [15], whereas in MFCC-TMP, Teager energy

is used instead of l2 energy. Time-domain representation is

used to compute TEO of subband signal [14]. Frame dura-

tion and shifting is 20 ms and 1 ms, respectively. 13-D feature

vector is computed by 30 Mel spaced subband filters. The

feature extraction scheme for MFCC-TMP is shown in Fig. 3.

Finally, normalized subband energy is computed followed by

logarithm and Discrete Cosine Transform (DCT) operations

to get proposed feature set, viz., MFCC-TMP, i.e.,

MFCC − TMPi(k) =

NF
∑

j=1

Sli,jcos

(

k(j − 0.5)π

NF

)

, (3)

where k = 1, 2 · · ·Nc, Nc = dimensions of feature vector

(13 in this work), NF = number of filters used in the Mel

filterbank (30 in this work).

Step 2: After feature computation, STM is computed

from features using eq. (1) and eq. (2).

Step 3: In order to incorporate the dynamics around the

present STM value, adjacent values are also considered. The

ith frame of concatenated feature vector is defined as:

xi = [Ci−N · · ·Ci−1CiCi+1 · · ·Ci+N ]
T
, (4)

where N corresponds to number of adjacent STM values into

consideration on either side in the preparation of concatenated

feature vector. The practical framework for feature concate-

nation is very similar to the one used in [16] (where 9 adjacent

frames are concatenated, i.e., N=9). The next subsection dis-

cusses about experimental setup.

3.2. Speech Corpus

The proposed approach is applied on the training and testing

part of the TIMIT American English acoustic-phonetic corpus

[9]. We have used the total 18 obstruents sounds (which are

shown in Table 1) from TIMIT database along with training

and testing examples. Total number of obstruent boundaries

is 31128 in entire TIMIT database.

3.3. Setup for Performance Evaluation

In this paper, problem is formulated as a binary classification

problem, where two classes correspond to obtruent bound-

aries and region of speech other than obstruent boundaries.

Since STM is used to capture the phonetic boundaries, we

may think of using proposed features in the vicinity of cur-

rent STM values. This would incorporate the information

about STM values and how fluctuations in STM value. Let

us now define few nomenclatures. In particular, let B = an-

chor point corresponding to phonetic boundaries of obstruent

(i.e., the ground truth), FC = frame center point, ξC = tol-

erance within frame, ξA = frame agreement duration, xt =

Phonetic Class Phonetic Symbols( # Train : # Test)

Voiced Unvoiced

Strong Fricative /z/(3773:1273), /s/(7475:2639),

/zh/(151:74) /sh/(2238:796)

Affricates /ch/(822:259),

- /jh/(1209:372)

Weak Fricative /v/(1994:710), /f/(2216:912),

/dh/(2826:1053), /th/ (751:267),

/hv/(1154:369) /hh/(957:256)

Stop /b/(2181:886),

/d/(3548:1245),

/g/(2017:755)

/p/(2588:957),

/t/(4364:1535),

/k/(4874:1614)

Table 1. Obstruents Phonetic Symbols and Statistics of Train-

ing and Testing Samples.

tth observation vector. We assign a two distinct labels to each

frame based on the location of FC and B. If |FC −B| < ξC ,

then xt = is considered to be belonging to class 1 otherwise

it belongs to class 2. It is as if a basket of 2ξC duration. For

testing the algorithm, we may introduce agreement duration

along with tolerance, i.e., if |FC − B| < ξC + ξA, then xt
is considered to be belonging to class 1 else it is assigned to

class 2. Here, the basket size, 2(ξC + ξA) is flexible based on

the value of ξA. In the experiments, ξC was kept as constant

(i.e., 1 ms) that models the frame where in obstruent bound-

aries are within 2ξC duration around FC (tight central ten-

dency for 1 ms ). Under the assumption that features of class

1 are associated with phone boundaries of obstruent sounds

and features of class 2 are associated with other speech in-

formation than obstruent phone boundaries. The description

of obstruent detection task is illustrated in Fig. 4. Gaussian

Mixture Model (GMM) of 64 components to model the ob-

struent boundaries, is used for classification. Earlier GMM

has been used extensively for speaker verification task in [17]

and phoneme recognition task [18].

For training and original phone 

boundary (B1 and B2)

B1 ∈ Class 1 (within a basket)

B2 ∈ Class 2 (outside a basket)

For testing and original phone 

boundary (B�
1  and B�

2 )

B�
1 ∈ Class 1 (within a basket)

B�
2 ∈ Class 2 (outside a basket)

{B1, B2, B
�
1, B

�
2} ∈ B = set of anchor 

points 

FC B1B2

(a)

Basket

(b)

B�
1 B�

2

Basket

FC

2ξC
2(ξC +ξA)

Fig. 4. Schematic diagram for performance evaluation for (a)

training samples and (b) testing samples.
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3.4. Performance Measures

The performance of proposed obstruent detection system is

evaluated under two different evaluation metrics, viz., % De-

tection Rate (DR) and % False Alarm Rate (FAR). % DR is

defined as follows,

%Detection Rate =
NC1

NTC1

× 100, (5)

where NC1 is the total number events when average frames

within a basket considered are correctly classified as class 1.

NTC1 total number of baskets considered in a test experi-

ment. % FAR is defined as follows.

% False Alarm Rate =

(

1−
NC2

NTC2

)

× 100, (6)

where NC2 is the total number frames in class 2 are correctly

classified as class 2. NTC1 is total number of frames in class

2 in a test experiment. For better performance, % DR should

be higher and % FAR should be lower. To quote statistical

significance of our experimental results, 95 % confidence in-

terval is also mentioned. For N trials, if the probability of

success is p, then confidence interval is [p−B, p+B], where

B is the band of confidence and is defined as [19].

B = zc

√

p(1− p)

N
× 100, (7)

where zc is called the level of coefficient of confidence. It is

1.96 for 95 % confidence interval [19].

4. EXPERIMENTAL RESULTS

The experimental results are performed by two different rep-

resentations. Fig. 5 shows the % DR and % FAR performance

for different agreement duration in the step of 1 ms along with

95 % confidence interval. It can be observed from Fig. 5, for

agreement duration of 2 ms, % DR crosses to 90 %, indi-

cating that the very slight change in the agreement duration

efficiently captures the STM information. Table 2 indicates

the performance of obstruent detection system in terms of %

DR and % FAR for different agreement duration using differ-

ent feature sets, viz., MFCC and MFCC-TMP along with 95

% confidence interval.

From Table 2, it can be observed that as agreement dura-

tion ξA increases, % DR increases and % FAR decreases. It

indicates that tight central tendency may miss out few acousti-

cal events for obstruent boundary detection. In addition, it can

be observed that as agreement duration increases, % DR in-

creases, since we are incorporating the evidences from larger

vicinity around the actual ground truth. Newly proposed fea-

ture set, viz., MFCC-TMP, performs better for less agreement

duration (i.e., tight agreement condition) whereas MFCC per-

forms better than MFCC-TMP for large agreement duration.

However, MFCC-TMP shows promising resulting in terms of

False Alarm rejection. From Fig. 5 (b), it can be observed

that MFCC-TMP consistently outperforms MFCC for all the

agreement duration. This may be due to effectiveness of en-

ergy computation via TEO (which exploits instantaneous fre-

quency). As shown in Fig. 3, the architecture of MFCC-TMP,

ξA (ms) MFCC MFCC-TMP

% DA % FAR % DA % FAR

0 80.7

(80.26,

81.14)

23.41

(23.02,

23.81)

85.03

(85.00,

85.08)

19.68

(19.65,

19.72)

5 94.14

(93.88,

94.40)

21.21

(20.96,

21.48)

94.21

(94.17,

94.25)

16.79

(16.76,

16.83)

10 96.55

(96.54,

96.93)

19.63

(19.41,

19.85)

96.05

(96.02,

96.10)

14.61

(14.58,

14.64)

15 97.07

(96.88,

97.26)

18.26

(18.06

,18.46)

96.64

(96.61,

96.68)

13.4

(13.37,

13.43)

20 97.59

(97.43,

97.77)

17.65

(17.44,

17.86)

96.42

(96.38,

96.46)

12.88

(12.85,

12.92)

Table 2. % DR and % FAR various agreement duration (along

with 95 % confidence interval).

Feature sets % Correct Detection

MFCC 54.39

MFCC-STM 57.06

MFCC-TMP 54.24

MFCC-TMP-STM 56.35

Table 3. Phone recognition performance on TIMIT dataset.

suggests that it has a capability to compute subband energy.

TEO has a capability to capture instantaneous frequency for

different subband [20]. The instantaneous frequency might

be different across the obstruent boundaries and hence may

play an important role in obstruent detection task. In ad-

dition, the effectiveness of STM has been tested for phone

recognition task. TIMIT training data and testing data (ex-

cluding /sa/ files) are considered. It is well known fact that

MFCC-delta representation improves speech recognition per-

formance. STM is one-dimensional representation of delta

features [6]. A group of 39 phones are considered as per

details suggested in [21]. 13-D static features (MFCC and

MFCC-TMP) and 14-D static features with their STM repre-

sentation (MFCC-STM and MFCC-TMP-STM) are consid-

ered. The performance of % correct detection is shown in

Table 3. From Table 3, it is found that STM-based feature

adds information which results in improved the performance

than that of static representation.

5. SUMMARY AND CONCLUSIONS

In this paper, the problem of obstruent detection is viewed as

binary classification of two acoustical events which exploits

boundary information around STM and information around

its neighbourhood to detect the obstruents. Here, two dif-

ferent feature sets, viz., MFCC and MFCC-TMP are used

to compute STM. Proposed algorithm for obstruent detection

can be used to classify the obstruents and refine newly devel-

oped features to improve the obstruent detection performance.

In addition, STM-based features along with static representa-
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Fig. 5. (a) % Detection Rate (DR) (with 95 % confidence interval) (b) % False Alarm Rate (FAR) (with 95 % confidence

interval) for various agreement duration ξA .

tion are tested for phone recognition task. It should be noted

that, our claim here is not regarding relative performance of

MFCC and MFCC-TMP. We are using MFCC-like represen-

tation via MFCC-TMP in order to capture spectral transition

information to efficiently detect obstruent boundary. Our fu-

ture work will be directed towards analysis of MFCC-TMP

for phone boundaries of other phonemes as well.
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