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ABSTRACT

Support Vector Machines (SVMs) are considered to be one of
the most powerful classification tools, widely used in many
applications. However, in numerous scenarios the classes are
not equally represented and the predictive performance of
SVMs on such data can drop dramatically. Different meth-
ods have been proposed to address moderate class imbalance
issues, but there are few methods that can be successful at
detecting the minority class while also keeping high accu-
racy, especially when applied to datasets with significant
level of imbalance. In this paper, we consider SVM ensem-
bles that are built by using a bootstrap-based undersampling
technique. We target to reduce the bias induced by class
imbalances via multiple undersampling procedures and then
decrease the variance using SVM ensembles. For combin-
ing the SVMs, we propose a new technique that deals with
class imbalance problems of varying levels. Experiments on
several datasets demonstrate the performance of the proposed
scheme compared to state-of-the-art balancing methods.

Index Terms— SVMs, Imbalanced dataset, Undersam-
pling, Ensemble learning methods

1. INTRODUCTION

Class imbalance problems occur in many practical machine
learning applications where one class has significantly less
training instances than other classes. In such scenarios, it is
usually more costly to misclassify the instances of the class
that is highly underrepresented. Typical examples include
rare disease detection, credit card fraud [1], oil spills [2] and
generally detection or classification of rare events. The per-
formance of classification algorithms can be strongly affected
by imbalanced training datasets. This is due to several reasons
[3], with the primary one being that the objective of many al-
gorithms is to maximize the overall accuracy. As the minority
class does not significantly contribute to this error a strong de-
crease of its classification accuracy is observed [4].

Different techniques have been proposed in the literature
to deal with class imbalance problems and increase the per-
formance of machine learning algorithms. These techniques
can be divided into two groups, namely external and inter-

nal methods [5]. Internal approaches comprise the advances
of the learning algorithm itself and take into account the im-
balance problem while learning. This includes, for example,
methods that assign different class costs so that the minority
class gets higher costs than the majority class [6]. There are
also methods that consider kernel modification in order to ac-
count for a bias of either the decision boundary or a fit of the
training data [6, 7, 8].

External balancing approaches refer to algorithms that op-
erate on the training data directly before the actual training.
The most popular ones are resampling techniques, namely
undersampling the majority class [9] and oversampling the
minority class [10]. Synthetic Minority Over-Sampling Tech-
nique (SMOTE) [11] is practically one of the most popular
and successful oversampling method used in many applica-
tions. Operating in the feature space, SMOTE balances the
dataset by introducing new synthetic examples of the minor-
ity class. The main drawback of this approach is the over-
head that SMOTE creates and it is still an open question how
to determine the amount of oversampling needed. There are
many other advanced SMOTE-based approaches that are pro-
posed in the literature e.g. in [12, 13]. The most popular
one is Borderline SMOTE [14] which is the standard SMOTE
method applied to the borderline samples only, introducing
less overhead. SMOTE and other oversampling-based balanc-
ing methods bring an overhead that can drastically increase
the training time of the classifier. At the same time some
methods of oversampling can lead to overfitting [10, 11].

Undersampling, on the other hand, is computationally ef-
ficient and an easy way to balance the training set. Since
there is a danger of removing potentially useful data, under-
sampling is often used together with resampling techniques.
In [15], several roughly balanced subsets are created by un-
dersampling according to the binomial distribution and then
used to learn independent learners. In [16] a method called
EasyEnsemble was proposed where undersampling is used to
exactly equalize the amount of the majority and minority data
examples for every bootstrap sample. Every sample is then
used to train AdaBoost ensembles that are combined, eventu-
ally, into one ensemble. An advanced version of EasyEnsem-
ble described in [16] is called BalanceCascade where each
bootstrapping sample is obtained sequentially by removing
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redundant examples from the original majority subset.
In this paper, we compare several techniques that deal

with class imbalance issues. We show that combining un-
dersampling together with a bootstrap-based aggregation
approach allows achieving higher classification performance
compared to traditional SMOTE or other common techniques.
The main contributions of the paper are:

• we propose a new ensemble combination technique,
the Weighted Balanced Combiner (WBC), that ac-
counts not only for the overall accuracy, but for the
accuracy of each class. This allows to obtain better
overall classification performance compered to exist-
ing bootstrap-based aggregation methods

• we systematically evaluate the performance of the pro-
posed technique and state-of-the-art methods in a vari-
ety of datasets with different imbalance levels

• we discuss the effect of imbalance on the ensemble
combination scheme and the tradeoff between detecting
the minority class while keeping high accuracy, provid-
ing guidelines when possible

The paper is structured as follows. In Section 2, we give a
brief overview of the SVM and the class imbalance effect.
Section 3 describes the proposed bootstrap-based aggregation
approach. Section 4 provides experimental results on various
datasets. We conclude the paper with a discussion in Section
5.

2. SVMS AND CLASS IMBALANCE

SVMs [17] are considered to be one of the most powerful
classifiers and are widely used in different applications of
pattern recognition and machine learning. By utilizing the
structural risk minimization concept [17] and the kernel trick
[18], SVMs are able to find a linear separating hyperplane
in a high dimensional dataspace while achieving good gen-
eralization properties. Furthermore, it has been shown that
SVMs are not affected by moderate imbalance problem [9]
since only a small amount of training samples (support vec-
tors) are responsible for the separating hyperplane position-
ing. However, SVMs and other discriminative methods are
challenged in the presence of high imbalanced training data.
In the sequel, we will consider the basic SVM formulation
and analyze the reasons for degradation when class imbalance
is present.

Consider a binary classification setting and let {(xi, yi)},
i = 1, ..., N be the training dataset, where xi is a training
sample and yi ∈ (−1,+1) its corresponding label. Given
a training set, the SVM finds an optimal hyperplane that sep-
arates two classes with maximum margin. The primal formu-
lation is

min
1

2
(‖w‖)2 + C

∑
i

ξi

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi and ξi ≥ 0,∀i

where w is a weight vector, b is the bias of the separating
hyperplane, ξi is the margin error for the i-th training exam-
ple and C is a parameter that sets the relative importance of
maximizing the margin and minimizing the training error.

The SVM formulation can be adopted to the cost-sensitive
case, where different types of errors are assigned different
costs. The primal formulation is then

min
1

2
(‖w‖)2 + Cγ

∑
i∈I+

ξi + C(1− γ)
∑
i∈I−

ξi

where I− and I+ are the set of samples that belong to the
majority and minority class, respectively.

As has been mentioned, SVMs often suffer from biased
decision boundaries toward the minority class, especially
when the imbalance level is high. Cost-sensitive extensions
of SVMs are a good example of internal methods applied to
address class imbalance issues; however, it has been shown
that typically only problems with a small amount of class
imbalance can be handled using cost-sensitive SVMs [19].
On the other hand, almost all external balancing approaches
aim to eliminate the biased decision boundaries effect and
can potentially be effective even in cases of high imbalance.
For SVMs, it is also of significant importance to have an
approach that balances the classes by reducing the size of
learning datasets, as non-linear SVMs are sensitive to its size
in view of computational complexity.

A common external technique to deal with class imbal-
ances is random undersampling (RU). In RU, the samples
of the majority class are being removed randomly, while the
samples of the minority class are kept untouched. By doing
so, a decrease of bias caused by the effect of imbalance can
be achieved. However, RU can discard potentially important
information and, as a consequence, different undersampling
procedures can lead to different decision boundaries. This
implies that RU is a high-variance balancing strategy and
cannot be directly used in many practical applications despite
its computational attractiveness compared to cost-sensitive
SVMs.

3. BOOTSTRAP-BASED SVM AGGREGATION

To leverage the advantages of RU balancing and handle the
effect of non-deterministic decision boundaries, we consider
Bootstrap Aggregating (Bagging). Bagging is a variance-
reduction method that has been shown to work successfully
when applied to different classifiers [20, 21]. First introduced
by Breiman [22] to create ensembles of learning algorithms,
the key idea of Bagging is to sample from the original dataset
several times. By doing this, the variability of the quanti-
ties of interest can be assessed [23, 24]. In Bagging, each
bootstrap realization is used to train a different model and
the results are averaged or otherwise combined to provide the
final prediction of the ensemble.

In this paper, we use the bootstrap to handle class im-
balances. Sampling is not performed on the whole original
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dataset, but only on the majority class subset ensuring that
its number of samples is set equal to the number of the mi-
nority class samples from the original dataset. The minority
class samples are combined with each bootstrap realization to
create balanced training subsets. Each subset is then used to
independently train K different SVMs.

The most important step in creating SVM ensembles is to
define a rule, according to which the result of each individual
SVM is combined to obtain a final decision. Combining sev-
eral independent classifiers can be done in different ways, for
example, operating at the class label or at the estimated pos-
terior level [25]. In previous works on bagging for class im-
balance problems [15, 16], simple average and majority vot-
ing combiners were used. As opposed to these approaches,
we consider a new scheme, the Weighted Balanced Combiner
(WBC), that is detailed in the sequel.

Let K be the number of base SVMs, fk, k ∈ {1...K}
be a decision function of the kth SVMs and F be the fi-
nal ensemble aggregating model. The output of the aggre-
gating model f(x) is then f(x) = F (f1(x), ..., fk(x)). We
propose a new method for combining the base classifier out-
puts on the class label level which is motivated by the poor
performance of simple majority voting schemes, such as the
Weighted Majority Vote combiner [25] when having a class
imbalance problem. We suggest to assign weights to each of
the base learners, however, keeping in mind that an overall
accuracy-based weight assignment is not an appropriate ap-
proach for class imbalance problem. Instead, for each weak
learner k, we assign wk with the following properties:

wk →0, if kth weak learner performs bad at least on one class

wk →1, if kth weak learner performs good on all classes

To follow this rule, we propose to determine the weights wk

based on the class-specific accuracies as opposed to overall
accuracy. We suggest combining the class-specific accuracies
in such a way that the final individual SVM weight reflects
how well the classifier deals with class imbalance. For an
L-class problem and the k-th base learner, we have

1

wk
=

1

L

(
1

acc(1)k

+
1

acc(2)k

+ ...+
1

acc(L)
k

)

where acc(l), l ∈ {1, ..., L} is the class-specific accuracy for
the l-th class. For two class problems that are the focus in this
paper we have

wk = 2 ·
acc(−)k · acc(+)

k

acc(−)k + acc(+)
k

where acc(−) and acc(+) are the accuracies of the majority
and minority classes, respectively. The aggregated classifier
is then obtained as

f(x) = sgn

(
K∑

k=1

wk · fk(x)

)

This formulation assures that a base SVM classifier that
performs well only on one class would get a low weight. If
an individual SVM classifier performs well on both classes,
the proposed combination scheme would assign a high weight
to this classifier, leading to a higher contribution to the final
decision. The overall procedure is summarized in Table 1.

Table 1. The Bootstrap procedure

Step 0. Dataset partitioning. Split the training dataset
S into minority and majority sets Smin and Smaj

Step 1. Bootstrapping. Sample K times from Smaj to
get bootstrap realizations Sk

bootstr, k = 1, . . . ,K
ensuring that the sample number in each real-
ization is equal to the sample number in Smin

Step 2. Merging. Combine each bootstrap realization
Sk

bootstr with the minority class subset Smin to ob-
tain K new balanced training sets Sk

balanced (i.e.
Sk

bootstr ∪ Smin = Sk
balanced, k = 1, . . . ,K).

Step 3. SVM training. Train K individual SVMs
independently on the balanced training sets
Sk

balanced to obtain K decision functions fk, k =
1, . . . ,K

Step 4. Assigning weights. Calculate the class-specific
accuracies acc(−)k and acc(+)

k on the validation
set and assign weights wk to every base learner

as wk = 2 · acc(−)
k ·acc(+)

k

acc(−)
k +acc(+)

k

Step 5. SVM combining. In the operation (or testing)
mode combine K outputs to obtain a final deci-
sion as f(x) = sgn(

∑K
k=1 wk · fk(x))

4. EXPERIMENTAL RESULTS

We conduct two sets of experiments to study the effectiveness
of the proposed approach. In our first experiment, we use
a synthetic dataset and study the performance of bootstrap-
based SVM aggregation with the proposed WBC combiner
(BWBC) while varying the imbalance level. Results of widely
used in practice SMOTE are also reported for comparison. In
our second experiment, we compare a set of representative
state-of-the-art balancing methods with BWBC, using real-
world datasets. The performance of the classifiers is measured
by the G-mean [10], which is a widely used performance mea-
sure when having class imbalance problems. For complete-
ness, tradeoffs on prediction accuracy are also reported.

4.1. Synthetic dataset

In this experiment, we study the classification performance of
BWBC in the presence of imbalance using synthetic datasets
with different imbalance ratios ( #positive instances

#negative instances ). For that
we create twelve synthetic datasets drawn from the same fam-
ily of functions, however, with different majority-to-minority
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class examples ratio. For BWBC we create K = 100 boot-
strap realizations. This particular K allows us to reach a con-
straint on the upper bound of standard deviation of G-mean
(std < ε), where ε = 0.05 in this paper. Further, 1000 Monte
Carlo iterations are conducted. The results of this experi-
ment are depicted in Figure 1. As can be seen, the average

Imbalance level

G
-m

e
a
n

0.0010.010.10.20.30.40.50.60.70.80.91

1

0.9

0.5

0.7

0.8

0.6

BWBC

SMOTE

Fig. 1. G-mean of BWBC and SMOTE on a synthetic dataset

G-mean value for BWBC over 1000 Monte Carlo iterations
stays almost constant, independently of the imbalance degree.
The obtained results indicate that the proposed BWBC is ro-
bust with respect to the degree of imbalance. SMOTE is per-
forming similarly to BWBC when having moderate imbal-
ance (imbalance levels: [0.1, 1]). However, BWBC outper-
forms SMOTE on the imbalance levels of 0.01 and 0.001.

4.2. Real datasets

To compare existing balancing methods with the BWBC ap-
proach, we have chosen five binary classification problems
with imbalanced datasets (haberman, cmc, yeast, ecoli, bal-
ance) from the UCI [26] repository with different imbalance
levels. During the experiment, we average the evaluated mea-
sures over 5-fold cross validation runs. For this experiment,
we test SVMs without imbalance fixing (SVM), SMOTE,
Bagging with Averaging Combiner (BAVC), EasyEnsemble,
BalanceCascade and the proposed BWBC method. Table 2
presents G-mean and accuracy measures with their standard
deviation for all five datasets and six methods.

4.3. Discussion

As can be observed from Table 2, the proposed method
achieves the highest G-mean value in most of the considered
datasets loosing typically less than 2-5 percentage points of
accuracy for a much larger gain in G-mean, even for cases
of relatively high imbalance. Comparing BWBC with other
bagging-based methods, we see that it outperforms them ei-
ther in G-mean (having higher or comparable accuracy) or
in accuracy (having comparable G-mean), indicating the im-
portance of the combining scheme in ensemble methods. It
should be noted that ecoli dataset has too few training sam-
ples (only 35 minority class examples) and seven continuous
features. For that reason all ensemble-based methods show
lower performance than SMOTE for this dataset. Finally,
BWBC has also less variance than SMOTE, both in the syn-
thetic and the real datasets. This is mainly due to two reasons:
on the one hand, SMOTE has strong randomization effects
due to the random interpolation procedure, while on the other
hand, our method benefits from the variance reduction effect
that is inherent in Bagging. This benefit comes at some com-
putational cost (from Bagging) but the use of undersampling
often compensates for the cost, at least for non-linear SVMs.

5. CONCLUSIONS

We have addressed the class imbalance problem by applying
a bootstrap-based SVM aggregation method. Furthermore,
we proposed a new ensemble combination technique that
takes into consideration the accuracies for each class. We
have applied this method on synthetic as well as real datasets,
achieving better class discrimination performance compared
to other state-of-the-art balancing methods, especially for
datasets with a high class imbalance level. Finally, we have
explained why the proposed method yields lower variance
compared to SMOTE and we have experimentally demon-
strated this effect across several real world datasets.

SVMs SMOTE BAVC EasyEnsemble BalanceCascade BWBC

haberman
G 0.306± 0.069 0.564± 0.056 0.623± 0.015 0.626± 0.024 0.621± 0.017 0.643± 0.015

Acc 0.736± 0.010 0.658± 0.032 0.682± 0.018 0.627± 0.017 0.629± 0.014 0.704± 0.014

cmc
G 0.320± 0.043 0.601± 0.021 0.623± 0.009 0.632± 0.009 0.647± 0.009 0.672± 0.008

Acc 0.778± 0.005 0.713± 0.012 0.676± 0.008 0.654± 0.008 0.673± 0.008 0.687± 0.008

balance
G 0.000± 0.000 0.000± 0.000 0.483± 0.023 0.456± 0.028 0.534± 0.037 0.471± 0.039

Acc 0.922± 0.000 0.869± 0.000 0.683± 0.021 0.498± 0.015 0.494± 0.013 0.758± 0.023

ecoli
G 0.745± 0.021 0.896± 0.016 0.814± 0.012 0.824± 0.030 0.824± 0.019 0.892± 0.003

Acc 0.934± 0.005 0.903± 0.007 0.827± 0.011 0.852± 0.020 0.817± 0.021 0.857± 0.006

yeast
G 0.665± 0.005 0.783± 0.007 0.788± 0.013 0.791± 0.008 0.792± 0.008 0.809± 0.004

Acc 0.887± 0.002 0.811± 0.006 0.817± 0.004 0.800± 0.005 0.801± 0.005 0.821± 0.003

Table 2. Accuracy (Acc) and G-mean (G) for different methods evaluated on various datasets
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