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ABSTRACT

In this paper, we describe a supervised subspace learn-
ing method that combines Extreme Learning methods and
Bayesian learning. We approach the standard Extreme Learn-
ing Machine algorithm from a probabilistic point of view.
Subsequently and we devise a method for the calculation of
the network target vectors for Extreme Learning Machine-
based neural network training that is based on a Bayesian
model exploiting both the labeling information available
for the training data and geometric class information in the
feature space determined by the network’s hidden layer out-
puts. We combine the derived subspace learning method with
Nearest Neighbor-based classification and compare its per-
formance with that of the standard ELM approach and other
standard methods.

Index Terms— Subspace Learning, Network targets de-
termination, Extreme Learning Machine.

1. INTRODUCTION

Feedforward neural networks have been adopted in many
real-world problems due to their effectiveness in learning
complex classification functions and models. Extreme Learn-
ing Machine (ELM) is an algorithm for training Single-hidden
Layer Feedforward Neural (SLFN) networks [1]. The main
idea in ELM-based approaches is that the network’s hidden
layer weights and bias values need not to be learned and can
be determined by random assignment. The network output
weights are, subsequently, analytically calculated. Similar
approaches have been also shown to be efficient in several
neural network training methods [2–5], as well as in other
learning processes [6]. Despite the random hidden layer
parameters determination, it has been proven that SLFN net-
works trained by using the ELM algorithm have the proper-
ties of global approximators [7,8]. Due to its efficiency, ELM
networks have been adopted in many classification problems
and many ELM variants have been proposed in the last few
years, extending the ELM network properties along different
directions, mainly targeting supervised and semi-supervised
classification [9–12].

Recently, the ELM algorithm has been extended to un-

supervised subspace learning [13], where it has been shown
that ELM-based unsupervised subspace learning is able to
achieve good performance, and compete several state-of-the-
art unsupervised subspace learning methods. However, such
a subspace learning approach is not able to exploit the addi-
tional information of the data labels that is usually available in
the training phase. Relevant work in Discriminant Analysis-
based subspace learning, e.g. [14, 15], has shown that the ex-
ploitation of labeling information is important for the deter-
mination of a subspace for data projection that leads to sat-
isfactory classification performance. This paper describes a
method that is able to exploit labeling information for ELM-
based subspace learning.

In this paper, we first approach the standard ELM ap-
proach from a probabilistic point of view. Then, we describe a
Bayesian model for the determination of appropriate network
target vectors, which is further employed for ELM-based su-
pervised subspace learning. We show that this approach can
be exploited by several ELM variants targeting supervised
SLFN networks training, e.g. [1, 10, 12, 16], in order to learn
a feature space of reduced dimensionality for data projection.
We combine it with a simple Nearest Neighbor classifier and
compare its performance with that of the standard ELM ap-
proach, as well as with the performance of standard subspace
learning and classification methods. Experimental results on
standard classification problems show that the adoption of the
modified network target vectors can enhance the performance
of ELM networks and provide performance comparable with
that of other subspace learning methods.

The remainder of the paper is organized as follows. Re-
lated work in ELM-based SLFN network training is described
in Section 2. Our probabilistic model for network target vec-
tors calculation is described in Section 3. Experiments are
provided in Section 4. Finally, this work concludes in Section
5.

2. RELATED WORK

Let us denote by xi ∈ RD, i = 1, . . . , N a set of N vectors
that we would like to use in order to train a SLFN network.
Each vector xi belongs to one of the C classes forming our
class set and this information is stored to the corresponding
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class label ci. For such a classification problem, the adopted
SLFN network consists of D input (equal to the dimension-
ality of xi), L hidden and C output (equal to the number of
classes involved in the classification problem) neurons. The
number of hidden layer neurons is a parameter of the algo-
rithm and is usually selected to be much greater than the num-
ber of classes, i.e., L� C [16].

In ELMs, the network’s input weights Win ∈ RD×L and
the hidden layer bias values b ∈ RL are randomly assigned,
while the network’s output weights Wout ∈ RL×C are an-
alytically calculated. Let us denote by vj , wk and wkj the
j-th column of Win, the k-th column of Wout and the j-
th element of wk, respectively. Given an activation function
Φ(·) for the network hidden layer neurons and using a linear
activation function for the network output layer neurons, the
response oi ∈ RC of the network corresponding to xi is given
by:

oik =

L∑
j=1

wkj Φ(vj , bj ,xi), k = 1, ..., C. (1)

The network hidden layer outputs can be calculated by using
almost any nonlinear piecewise continuous activation func-
tion Φ(·), such as the sigmoid, sine and Radial Basis Function
(RBF) [8,16,17]. Let us denote by φi ∈ RL, i = 1, . . . , N the
training data representations in the feature space determined
by network’s hidden layer outputs, noted as ELM space here-
after. (1) can be expressed in a matrix form as O = WT

outΦ,
where Φ = [φ1, . . . ,φN ], O ∈ RC×N is a matrix containing
the network responses for all training data xi and the subscript
T denotes the transpose operator.

Standard ELM algorithm assumes zero training error [1].
That is, it is assumed that oi = ti, i = 1, . . . , N , or by using a
matrix notation O = T, where T = [t1, . . . , tN ] is a matrix
containing the network target vectors. The network output
weights Wout are analytically calculated by:

Wout =
(
ΦΦT

)−1
ΦTT . (2)

The calculation of the network output weights Wout

through (2) is sometimes inaccurate, since the matrix ΦΦT

is singular in the case where L > N . A regularized version
of the ELM algorithm that allows small training errors and
tries to minimize the norm of the network output weights
Wout has been proposed in [16], where the network output
weights are calculated by solving the following optimization
problem:

Minimize: J =
1

2
‖Wout‖2F +

c

2

N∑
i=1

‖ξi‖
2
2 (3)

Subject to: WT
outφi = ti − ξi, i = 1, ..., N, (4)

where ξi ∈ RC is the error vector corresponding to xi
and c > 0 is a parameter denoting the importance of the
training error in the optimization problem. Based on the

Karush-Kuhn-Tucker (KKT) theorem [18], the network out-
put weights Wout can be determined by solving the following
equivalent dual optimization problem:

J̃ =
1

2
‖Wout‖2F+

c

2

N∑
i=1

‖ξi‖22−
N∑
i=1

ai
(
WT

outφi − ti + ξi
)
.

(5)
By determining the saddle points of J̃ with respect to Wout,
ξi and ai, the network output weights Wout are obtained by:

Wout =

(
ΦΦT +

1

c
I

)−1
ΦTT , (6)

or

Wout = Φ

(
ΦTΦ +

1

c
I

)−1
TT = Φ

(
K +

1

c
I

)−1
TT ,

(7)
where K ∈ RN×N is the ELM kernel matrix, having ele-
ments equal to [K]i,j = φTi φj [19]. In [16] it has been shown
that, by exploiting the kernel trick [20], K can be any posi-
tive semidefinite kernel matrix defined over the input data xi.
In [21] it has also been shown that kernel ELM formulations
have connections with infinite neural networks. By using (7),
the response of the network for a vector xt ∈ RD is given
by ot = WT

outφt. Using (7), one can also define a kernel
formulation for the network response calculation, i.e.:

ot = T

(
K +

1

c
I

)−1
kt, (8)

where kt ∈ RN is a vector having elements equal to kt,i =

φTi φt.
Most of the extensions of the ELM algorithm have been

proposed for supervised and semi-supervised classification
[10–12], trying to design good optimization problems for the
calculation of the network output weights. Some others ex-
ploit Linear Algebra properties in order to determine a good
set of weights and bias values for the hidden layer neurons.
For supervised classification, the elements of the network tar-
get vectors ti = [ti1, ..., tiC ]T , each corresponding to a train-
ing vector xi, are set to tik = 1 for vectors belonging to
class k, i.e., when ci = k, and to tik = −1 when ci 6= k.
For semi-supervised classification, the target vectors of the
labeled training vectors are set as above and the target vectors
of the unlabeled training vectors are set equal to zero. That is,
for the determination of the network target vectors, only the
labeling information of the training data is exploited.

3. TARGET VECTORS DETERMINATION

Here we describe a method for the determination of network
target vectors exploiting both training data labeling infor-
mation and training data geometric information in the ELM
space. Due to space limitations, an explanation on why we
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expect that the adoption of such target vectors will lead to
better ELM-based subspace learning is left for the journal
version of the paper.

First, we show that, in the supervised case, the solution
obtained for ELM networks employing target values tik ∈
{−1, 1} is equivalent to the solution obtained for ELM net-
works employing target values t̃ik ∈ {0, 1}. Let us denote
by T̃ a matrix containing the target vectors t̃i and by W̃out

the output weights obtained by using T̃. Let us also denote
by Φ† the generalized pseudo-inverse of ΦT . The network
output weights obtained by using T are given by:

Wout = Φ†TT = Φ†(2T̃− 1)T = 2W̃out −Φ†1T , (9)

where 1 ∈ RC×N is a matrix of ones. The network outputs
corresponding to the weights W̃out are given by:

Õ = W̃T
outΦ =

1

2
(Wout + Φ†1T )TΦ =

1

2
O +

1

2
1. (10)

Thus, in supervised ELMs, employing target values tik ∈
{−1, 1} is equivalent to using target values t̃ik ∈ {0, 1}. In
the latter case, it can be considered that t̃ik expresses the prob-
ability of φi to belong to class k, given the observation ci, i.e.,
tik ≈ p(k|ci). That is, in standard ELMs the determination of
the network target vectors exploits only the labeling informa-
tion available for the training vectors and does not take into
account information appearing in φi.

Taking into account both ci and φi, the probability of
class k can be expressed using the Bayes formula as:

p(k|ci,φi) ∝ p(ci,φi|k)p(k), (11)

where∝ denotes the proportionality operator. The class prob-
ability p(k) can be estimated by exploiting the labeling infor-
mation of the training data as p(k) = Nk

N , where Nk denotes
the number of training vectors belonging to class k. Since
for the calculation of the conditional probabilities p(ci,φi|k)
using the training vectors an enormous training set would be
required, we can define p(ci,φi|k) = p(φi|k)p(ci|k), where
independence between ci and φi is assumed. That is, the
probability of class k, given the observations ci and φi, can
be expressed by:

p(k|ci,φi) ∝ p(φi|k)p(ci|k)p(k). (12)

In order to define the above mentioned probabilities, we
would like to define an appropriate model for the classes
forming the classification problem, when represented in the
ELM space. Let us consider the One-Versus-All classifica-
tion problem corresponding to the k-th output neuron. By
setting the target values tik = 1 for training samples belong-
ing to class k and tik = −1 for training samples that do
not belong to class k, ELM approaches assume that class k
can be discriminated from all other classes by using a hy-
perplane passing through the origin in the high-dimensional

ELM space RL. This leads to the assumption that class k is
homogeneous in RL.

Exploiting the class unimodality assumption of ELMs, we
define the representation of class k in RL by the correspond-
ing class mean vector:

mk =
1

Nk

∑
j,cj=k

φj . (13)

After the calculation of the class mean vectors mk, k =
1, . . . , C of all the classes forming the classification problem,
the conditional probabilities p(φi|k) can be calculated by:

p(φi|k) =
d(mk,φi)∑C
j=1 d(mj ,φi)

, (14)

where d(mk,φi) is a function denoting the similarity of φi
and mk. In order to increase class discrimination, we employ
the following similarity measure in our experiments:

d(mk,φi) = exp
(
−γ‖mk − φi‖22

)
. (15)

In (15), γ > 0 is a parameter that is used in order to scale the
Euclidean distance between mk and φi. In this paper we fol-
low a per-class approach. That is, we determine C parameter
values γk, k = 1, . . . , C, each for one class. We set γk = 1

rσ2
k

,
where σk is set equal to the mean Euclidean distance between
φi, 1 = 1, . . . , N and mk.

Following a similar approach, the conditional probabili-
ties p(ci|k) can be obtained by:

p(ci|k) =
d(mk,mci)∑C
j=1 d(mj ,mci)

, (16)

where d(mk,mci) is given by:

d(mk,mci) = exp
(
−δ‖mk −mci‖22

)
. (17)

While the parameter δ > 0 can be optimized by applying the
cross-validation approach, we have experimentally observed
that a value of δ = 1

2σ2
m

, where σm is the mean Euclidean
distance between the mean class vectors provides satisfactory
performance in all tested cases.

In the case where the network hidden layer outputs
φi, i = 1, . . . , N are available, the network target vec-
tors can be directly computed by using the previously defined
probability values, i.e., tik = p(k|ci,φi). In the case where
a kernel ELM formulation is adopted, as in (7), the distance
values in (14) and (15) can be calculated by employing the
pairwise training vectors similarity values stored in the ELM
kernel matric K. The target vectors ti can be normalized in
order to have unit l1 norm. However, we have experimentally
found that this is not necessary. It should be noted here that
the standard ELM approach using target values tik ∈ {−1, 1}
is a special case of the previously described approach for
γ � 1, δ � 1 and p(k) = 1, k = 1, . . . , C.
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Table 2. Mean classification rates (%) and standard deviations on standard data sets.

ELM RELM KELM
Data set Standard Modified Standard Modified Standard Modified SVM KSR
Column 78.19 (±0.91) 78.71 (±0.49) 79.45 (±0.59) 80.74 (±0.22) 81.03 (±0.2) 81.13 (±0.51) 81.35 (±0.2) 77.68 (±0.82)
Glass 63.69 (±1.3) 65.68 (±0.9) 64.92 (±0.65) 66.76 (±0.77) 68.45 (±0.73) 69.43 (±0.7) 71.41 (±0.31) 64.25 (±0.78)
Ionosphere 93.02 (±0.76) 94.19 (±0.54) 93.02 (±0.76) 94.27 (±0.47) 95.07 (±0.27) 95.36 (±0.27) 95.95 (±0.18) 95.24 (±0.63)
Iris 95.53 (±0.63) 97.13 (±0.32) 95.53 (±0.63) 97.73 (±0.72) 97.4 (±0.21) 97.47 (±0.42) 97.33 (±0.01) 94.8 (±0.42)
Libras 64.39 (±0.42) 82.28 (±0.93) 64.87 (±0.47) 84.59 (±0.41) 85.26 (±0.3) 85.71 (±0.94) 85.55 (±0.34) 86.21 (±0.2)
Madelon 57.76 (±0.6) 58.25 (±0.56) 60.01 (±0.33) 60.73 (±0.43) 63.73 (±0.13) 64.51 (±0.21) 64.15 (±0.13) 63.59 (±0.01)
Segmentation 88.78 (±0.01) 94.94 (±0.13) 89.97 (±0.11) 95.08 (±0.15) 95.68 (±0.01) 96.57 (±0.01) 96.9 (±0.01) 97.45 (±0.01)
Synth.Control 88.68 (±0.2) 93.27 (±0.56) 91.87 (±0.32) 93.95 (±0.39) 95.25 (±0.26) 96.48 (±0.01) 96.93 (±0.21) 95.33 (±0.01)
Tae 47.27 (±0.57) 65.77 (±0.94) 50.74 (±0.47) 68.75 (±0.97) 54.26 (±0.01) 67.45 (±0.01) 57.08 (±0.01) 60.2 (±0.01)
TicTacToe 83.09 (±0.01) 85.5 (±1.03) 86.34 (±0.29) 92.68 (±0.53) 97.29 (±0.01) 97.39 (±0.01) 91.23 (±0.01) 83.72 (±0.01)

Table 1. Data sets used in our experiments.
Data set Samples D C

Column 310 6 3

Glass 214 9 6

Ionosphere 351 34 2

Iris 150 4 3

Libras 360 90 15

Madelon 2600 500 2

Segmentation 2310 19 7

Synth.Control 600 60 6

Tae 151 5 3

TicTacToe 958 9 2

4. EXPERIMENTS

We have applied our method on ten standard classification
problems coming from the machine learning repository of the
University of California Irvine (UCI) [22]. Information con-
cerning the data sets used is illustrated in Table 1. Due to
space limitations, results on more datasets, along with com-
parisons of the training times in larger data sets between the
standard ELM and proposed approaches and a statistical sig-
nificance analysis of the experimental results are left for the
journal version of the paper.

For each data set we apply 10 experiments and measure
the performance of the method by calculating the mean classi-
fication rate over all experiments and the corresponding stan-
dard deviation value. In each experiment, the five-fold cross-
validation procedure is applied, where we take into account
the class labels of the data. This means that on each experi-
ment we randomly split each class in five sets and apply five
training-evaluation rounds by using the obtained set indices.

We compare the performance of ELM [1], RELM [16]
and KELM [16] networks described in Section 2, when using
the standard target vectors and the ones determined by ap-
plying our method. For the KELM method exploiting a ker-
nel formulation we have employed the RBF kernel function,
where we set the parameter σ equal to the mean Euclidean

distance between the training vectors xi, which corresponds
to the natural scaling factor for each data set. For the ELM
methods using random hidden weights, we used the RBF acti-
vation function Φ(vj , bj ,xi) = exp

(
− ‖xi−vj‖22

2b2j

)
, where the

value bj is set equal to the mean Euclidean distance between
the training data xi and the network input weights vj . The
optimal value of the parameters r and c have been determined
by using a grid search strategy with values r = 10−3,...,3 and
c = 100,...,6, respectively. For ELM methods employing ran-
dom hidden weights we used L = 1000 hidden layer neurons,
which is a value that has been shown to provide good results
in many classification problems [16].

Table 2 illustrates the performance of each algorithm,
when using the standard and the modified approaches for the
determination of the network’s target vectors. The adoption
of our method enhances the performance of ELM, RELM and
KELM networks in all cases. In Table 2 we also provide the
performance obtained by applying Support Vector Machine
(SVM)-based and Kernel Spectral Regression (KSR)-based
classification. We omit providing the performance of Un-
supervised ELM (UELM), since its performance was far
inferior when compared to the remaining methods. This is
reasonable, since UELM does not take into account class in-
formation of the training data. As can be seen in Table 2 there
is not a widely optimal classification scheme. KSR-based
classification achieves the best performance in two out of
ten cases, SVM achieves the best performance in four, while
the KELM-based method using the modified target vectors
provides the best performance in five out of ten cases.

5. CONCLUSIONS

In this paper, a supervised subspace learning method has
been described and evaluated. The method builds a Bayesian
model that exploits the assumptions of the Extreme Learning
Machine algorithm for the calculation of network target vec-
tors. These vectors exploit information relating to both the
training class labels, as well as geometric class information
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in the ELM space. Our approach can be exploited by sev-
eral ELM variants proposed for supervised neural network
training in order to learn a feature space for nonlinear data
projection and classification.
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