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ABSTRACT

Estimating impulse responses for a single source is a cru-

cial problem for many applications in audio signal process-

ing, such as source extraction. Since absolute impulse re-

sponses are hard to identify, relative impulse responses or,

equivalently, relative transfer functions are identified instead.

Independent Component Analysis (ICA) for convolutive mix-

tures offers the possibility to determine relative impulse re-

sponses implicitly by separating the target source from inter-

fering sources. In this paper, fundamental limitations of rela-

tive transfer function (RTF) estimation are analyzed by calcu-

lating least-squares (LS)-optimal estimates in adverse scenar-

ios, where the influence of scatterers and reverberation on the

performance must be accounted for. Hereupon, ICA-based

RTF estimation in the TRINICON framework is compared

with the LS-optimal estimates.

Index Terms— Independent component analysis, im-

pulse response estimation, relative transfer functions

1. INTRODUCTION

A common problem in array signal processing is the extrac-

tion of a desired (point) source from a mixture of sources.

In the past, numerous methods for multichannel signal ex-

traction have been developed, the most popular ones being

the well-known minimum variance distortionless constraint

(MVDR) beamformer [1, 2] or its more general form, the lin-

early constraint minimum variance (LCMV) beamformer [3],

and the multichannel Wiener filter (MWF) [4]. While the

MWF requires an estimation of correlation matrices for the

undesired signal components, which can, e.g., be performed

while the desired source (‘target’) is inactive, LCMV beam-

forming requires the knowledge of room impulse responses

from the target source to the sensors for extraction of the orig-

inal source signal. In practice, estimating the absolute im-

pulse responses from the source position to the microphones

is a difficult task. A simpler, but still valuable alternative,

however, is estimating the relative impulse responses between

the microphones [5–7].

With LCMV beamforming as an application in mind,
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Fig. 1: Signal model for ICA-based source separation.

in this paper, Triple-N Independent Component Analysis

for Convolutive Mixtures (TRINICON)-based convolutive

ICA [8, 9] is investigated for estimating the relative impulse

responses in a moderately reverberant acoustic environment.

Extending the work in [8], where only free-field propagation

is considered, the influence of the coherence of the target

source components in the input signals and of scatterers be-

tween the sensors (such as the head in binaural hearing aids)

is analyzed.

The paper is organized as follows: In Section 2, the signal

model is presented. Hereupon, the TRINICON-based convo-

lutive ICA method is recapitulated in Section 3 and the re-

lation between ICA and relative room impulse response es-

timation is discussed in Section 4. In Section 5, the general

limitations of RTF estimation are evaluated by considering

LS-optimal estimates. Finally, experiments with TRINICON

ICA are performed in Section 6 and compared with the opti-

mum results.

2. SIGNAL MODEL

In Fig. 1, a typical scenario for ICA is depicted: The two mi-

crophones capture a mixture of the target source s(k) filtered

with absolute room impulse responses h1(k) and h2(k), and

components of interferers or noise n(k), which yields the in-

put signals

xp(k) = hp(k) ∗ s(k) + np(k), p ∈ {1, 2}, (1)
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where ∗ denotes (linear) convolution. In a determined two-

source blind source separation (BSS) application, n(k) is a

point source and the components np(k) can analogously to

the target source be described by a convolution with impulse

responses. Since we are only interested in the target source

and for a more general representation, however, this relation

is omitted in the signal model.

3. ICA-BASED BLIND SOURCE SEPARATION

ICA [10] aims at separating individual point sources from a

mixture of signals by minimizing the mutual information be-

tween the output channels and, thus, maximizing statistical

independence. We will consider the TRINICON-based ICA

approach for convolutive mixtures as discussed in [11–13]. In

this section, we briefly recapitulate the theory of TRINICON

ICA.

3.1. TRINICON for blind source separation

As mentioned before, the goal of ICA is the minimization

of the mutual information between the output channels y1(k)
and y2(k). In the TRINICON framework, this minimization

can be expressed in terms of a cost function [13]

JBSS(m) =

∞
∑

i=0

β(i,m)
1

N

iL+N−1
∑

k=iL

log
py,2D (y(k))
2
∏

l=1

pyl,D(yl(k))

,

(2)

where yl(k) are 1 ×D vectors containing the D most recent

samples of yl(k) and y(k) = [y1(k),y2(k)]. p•,M (•) de-

notes an M-variate probability density function (pdf), L is the

filter length, N is the block length, β(i,m) is a window, and i

and m are block indices. Note that in the case of independent

outputs, the 2D-variate pdf becomes equal to the product of

D-variate pdfs and, hence, the whole term is minimized.

While broadband approaches do not suffer from the inter-

nal permutation problem inherent to narrowband approaches

(i.e., the output channel order differs from subband to sub-

band [14]), an external permutation ambiguity still exists,

such that it cannot be controlled which source will appear in

which output channel. In order to avoid this ambiguity, the

authors in [15] proposed adding a geometric constraint to one

output channel. Assuming that the target source s(k) in Fig. 1

should be suppressed in output channel 2, the filters w12(k)
and w22(k) are constrained by the cost function

JGC =
∣

∣W†(µ)e(µ)
∣

∣

2
, (3)

where W(µ) = [W12(µ),W22(µ)]
T

, W12(µ) and W22(µ)
being the DFT-domain representations of w12(k) and w22(k),
and e(µ) is a steering vector of the form

e(µ) =

[

1, exp

(

−j
2πµ

N

d

c
cos(ϕtar)fs

)]T

. (4)

w11(k)

w21(k)
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Fig. 2: Estimation of the RIR ĥ12(k).

In the steering vector, ϕtar, d, c and fs denote the angle of

the direction of arrival (DOA) of the target source relative to

the array axis (0◦ being the left endfire position) which is as-

sumed to be known, the microphone distance, the speed of

sound and the sampling rate, respectively. By pushing adapta-

tion towards a solution whereW(µ) is orthogonal to e(µ), the

geometric constraint tries to create a relative delay between

the two filters that compensates for the time difference of ar-

rival (TDOA) of the target source, hence, leading to a can-

cellation of the target source in Channel 2. Using a weighted

sum of both cost functions, a solution where the target source

appears in output signal y1(k) and the sum of all interfering

sources appears in signal y2(k), is sought.

3.2. Ambiguity of the ICA solution

We assume that due to the geometric constraint in (3), the tar-

get source appears at the output y1(k) while being suppressed

in output y2. This implies that the target source components

in signals v1(k) and v2(k) (see Fig. 1) are equal (with a dif-

ferent sign). As a result, the filters w12(k) and w22(k) have

to satisfy the relation

s(k) ∗ h1(k) ∗ w12(k) + s(k) ∗ h2(k) ∗ w22(k) = 0 (5)

and, thus, if this should hold for all possible signals s(k),

h1(k) ∗ w12(k) = −h2(k) ∗ w22(k) (6)

From (6), it is evident that the convolutive ICA problem

does not have a unique solution. By restricting the adapta-

tion of the filters, however, relative impulse responses can be

estimated, which will be further discussed in the following

section.

4. APPLICATION OF ICA-BASED BLIND SOURCE

SEPARATION TO RIR ESTIMATION

As discussed in [8], ICA can be exploited for estimating the

relative impulse responses between the two microphones. In

this paper, we will distinguish two versions:

1. By fixing w22(k) to an integer delay δ(k−k0) as depicted

in Fig. 2, the filter w12(k) is forced to the solution

w12(k) = −ĥ12(k) = −h−1

1
(k)∗h2(k)∗ δ(k−k0), (7)
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Fig. 4: Evaluation scenario for single-source scenarios.

where ĥ12(k) denotes the relative impulse response be-

tween microphone 1 and microphone 2. The delay k0 > 0
needs to be specified in order to be able to identify non-

causal impulse responses.

2. Equivalently, fixing w12(k) to δ(k − k0) as depicted in

Fig. 3 allows for identifying the relative impulse response

h21(k) between microphone 2 and microphone 1.

w22(k) = −ĥ21(k) = −h−1

2 (k)∗h1(k)∗ δ(k−k0). (8)

5. LIMITATIONS OF RTF ESTIMATION

In this section, structural limitations of RTF estimation in ad-

verse scenarios are analyzed. To this end, we consider a sce-

nario as shown in Fig. 4. A target source is active at an az-

imuth ϕtar ∈ [0◦, 360◦). For the experiment, the microphone

signals of the target source were generated by convolving a

speech signal with impulse responses of a moderately rever-

berant room (T60 ≈ 400ms) at a distance of 1m, captured

with hearing aids mounted on a head as scatterer. All simula-

tions were performed at a sampling rate fs = 16kHz. Filter

w22(k) was fixed to a unit impulse δ(k − k0) such that only

filter w12(k) was adapted, which should approach −ĥ12(k)
as shown in (7). In order to analyze the limitations of RTF

estimation, the filter was determined by calculating the LS

estimate

w12,LS = argmin
w

E
{

(

x2(k − k0)−wTx1(k)
)2
}

, (9)

with w12,LS = [w12,LS(0), . . . , w12,LS(L− 1)]
T

and x1(k) =

[x1(k), . . . , x1(k − L+ 1)]
T

. For the evaluation, the normal-

ized RTF error (NRE) is used, which we define in the DFT

domain as

NREij(µ) = 20 log10

[

|Hij,est(µ)−Hij,true(µ)|

|Hij,true(µ)|

]

. (10)

The true RTFs are calculated by dividing the DFTs of h1(k)
and h2(k), while the estimated relative transfer function is

calculated by transforming the LS estimate according to (9)

into the DFT domain. Irrespective of the filter length, a DFT

length of 2048 is used.

In Fig. 5a–c, the results obtained for filter length L ∈
{256, 512, 1024} and k0 = L

8
(which turned out to be a suit-

able choice for all filter lengths) are shown dependent on tar-

get source position and frequency. Below the color plot, the

average over all frequencies is plotted. By comparing the

three subfigures, we can draw the following conclusions: First

of all, the RTF estimation yields the best results for source po-

sitions in the left half plane (especially for filter length L =
1024). This fact can be explained by considering (7): In order

to obtain the optimum solution, the impulse response h1(k)
needs to be inverted. In the left half plane (0◦ ≤ ϕtar ≤ 90◦

and 270◦ ≤ ϕtar < 360◦), a direct path between the tar-

get source and microphone 1, whereas in the right half plane

(90◦ ≤ ϕtar ≤ 270◦), h1(k) contains strong scattering ef-

fects. Obviously, inverting h1(k) would require much more

taps than inverting h2(k) does. Moreover, all three figures ex-

hibit a characteristic pattern, where the worst results in each

half plane are obtained at angles of approximately ±20◦ rela-

tive to endfire position. In order to further analyze this issue,

the coherence of the microphone signals calculated by means

of the Welch method with window lengths equal to the LS

filter lengths is plotted in Fig. 5d–f. By comparing Fig. 5a–c

and Fig. 5d–f, we can see a strong relation between the co-

herence of the input signal and the achievable RTF estimation

accuracy.

6. EVALUATION OF ICA-BASED RTF ESTIMATION

In Section 5, the limitations of the RTF identification in the

scenario at hand were evaluated by deriving optimum LS es-

timates from single-source signals. In this section, the per-

formance achievable with TRINICON ICA will be compared

with the optimum performance. For the ICA method as ex-

plained in [12], a filter length of L = 1024, a block size

for calculating the correlation matrices of K = 4096 and a

weight of η = 0.5 for the directional constraint were cho-

sen. Speech signals of length 30s were used as source signals

and 500 iterations were applied to the ICA algorithm. In or-

der to prevent the directional constraint (which assumes free-

field propagation) from unnecessarily disturbing the adapta-

tion, the directional constraint was only applied if the relative
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(b) NRE [dB], filter length L = 512.
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(c) NRE [dB], filter length L = 1024.
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(d) MSC, window length LW = 256.
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(e) MSC, window length LW = 512.
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(f) MSC, window length LW = 1024.

Fig. 5: NRE in [dB] (a–c) and magnitude squared coherence (d–f) of the target source components dependent on target source

position, frequency and filter / window length.

delay between the filters w12 and w22 did not match the de-

sired delay. Due to the symmetry of the scenario, we only

consider the range from 0◦ to 180◦.

The simulations are organized as follows: As a first step,

the performance achieved in the absence of an interferer (and

additive noise) is compared with that achieved with the LS-

optimal filters. After that, an interferer will be added at the

opposite endfire position relative to the target source (i.e., 0◦

for ϕtar ∈ [90◦, 180◦] and 180◦ for ϕtar ∈ [0◦, 90◦)) in order

to analyze the effect of interference on the RTF estimate.

6.1. Single-source scenario

In Fig. 6b, the performance of ICA-based RTF estimation is

shown in terms of NRE. A comparison with the LS-optimal

results in Fig. 6a reveals two conclusions: 1.) For ϕtar ∈
[0◦, 90◦], ICA achieves results that are very close to the LS

estimate, and only slight degradations at frequencies close

to 8kHz are observable. 2.) On the other hand, for ϕtar ∈
[90◦, 180◦], the performance deteriorates strongly. This ef-

fect can be explained as follows: Since our desired solution

in (7) implicitly requires an inversion of the impulse response

h1(k), the filter w12 requires less samples for ϕtar ∈ [0◦, 90◦]
(where the direct path is dominant) than for ϕtar ∈ (90◦, 180◦]
(where the direct path is influenced by the scatterer), which

was already observable from the LS results. Since we only

constrain output channel 2, ICA still has the possibility to sup-

press the target source in output channel 1 (instead of chan-

nel 2 as enforced) and, hence, model the simpler inversion

of h2(k) in filter w21(k). Although the geometric constraint

creates a peak in the filter w12 to model the desired delay,

the ICA adaptation creates other peaks at different positions,

such that in total, the desired RTF cannot be modeled. A sim-

ple remedy, however, consists in estimating the impulse re-

sponses specified in (8) and inverting this solution.

6.2. Two-source scenario

When an additional interferer is active, a degradation be-

comes observable (average over all frequencies 2.5–4.2dB

for 20◦ ≤ ϕtar ≤ 90◦ and up to 8.3dB for ϕtar = 5◦). For

low frequencies (≤ 4kHz), however, which are dominant
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(b) NRE [dB] with ICA, 1 source.
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(c) NRE [dB] with ICA, 2 sources.

Fig. 6: Comparison of the NRE achieved with LS and ICA for 0◦ ≤ ϕtar ≤ 180◦ and a filter length L = 1024.

in speech signals and attenuated less by the scatterer, the

mean NRE over all positions only increases by 1.2dB from

−15.0dB to −13.8dB.

7. CONCLUSIONS

In this paper, the influence of scatterers and limited filter

lengths on relative transfer function estimation was investi-

gated in a reverberant scenario (T60 ≈ 400ms). It was shown

that there exists a strong relation between the coherence of

the target source components and the achievable identifica-

tion error (even with the optimum LS estimate). Since relative

transfer function estimation implicitly involves inverting one

of the two absolute impulse responses, a scatterer can lead

to pronounced differences in terms of alignment error for

different choices of the reference signal. This effect can be

expected from considering the LS-optimal solutions (where

the reference signal is explicitly defined) and becomes crucial

in the semiblind ICA approach, where the desired solution

is only enforced by an additional constraint. With a suitable

choice of the reference signal, however, ICA achieves results

that are similar to the LS estimates in single-source scenarios

and degrade only slightly in the presence of an interferer.
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