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ABSTRACT 

 
Neural oscillations in various distinct frequency bands and 
their interrelations yield high temporal resolution signa-
tures of the human brain activity. This study demonstrates 
solutions to some of the common challenges in the analy-
sis of neurophysiological data by means of subthalamic 
local field potentials (LFP) acquired form patients with 
Parkinson's Disease (PD) undergoing deep brain stimula-
tion therapy. Multivariate empirical mode decomposition 
(MEMD), being a data-driven method suitable for multi-
channel data, is employed. This method allows identifica-
tion of oscillatory bands without the requirement of fixed 
a priori basis functions. Our study focuses on two issues: 
(i) Determination of data specific frequency bands and 
revealing the weak inconspicuous high frequency compo-
nents in the data and (ii) validation of the biological mean-
ingfulness of the MEMD oscillatory components via 
phase–amplitude coupling as previously shown to be in-
herent in subcortical PD LFP data. 
 

Index Terms— local field potentials, oscillations, 
Parkinson’s disease, coupling, multivariate empirical 
mode decomposition 
 

1. INTRODUCTION 
 
Identification of neural oscillatory activity in various dis-
tinct frequency bands and their cross interactions has been 
essential to characterize physiological and pathological 
mechanisms in the human brain [1]. Analysis of simulta-
neous multichannel brain signals, e.g., EEG and MEG 
data, is often handled under inexact assumptions of sta-
tionarity, linearity, predefined frequency bands and basis 
function models. This study concerns with local field po-
tential (LFP) data acquired from the subthalamic nuclei 
(STN) of patients with Parkinson’s disease (PD) undergo-
ing deep brain stimulation (DBS) therapy. With such data 
at hand, we suggest solutions via the use of the recently 
introduced multivariate empirical mode decomposition 
(MEMD) method [2], which is suitable for multichannel 
and noisy data. 
                                                
The first author is supported by The Scientific and Technological 
Research Council of Turkey (TÜBİTAK # 112E562). In addi-
tion, the authors acknowledge support by the research commis-
sion of the medical faculty (# 9772562) and the strategic research 
fund of the Heinrich Heine University. 

For many existing studies investigating neuronal oscil-
lations, the determination of frequency bands is often not 
explicitly justified. It might be based on the specific da-
taset features such as spectral peak frequencies, however, 
lacking a clear and reproducible modus operandi. Im-
portantly, the defined frequency band ranges affect analy-
sis results when the spectral power change is assessed 
based on the power peak or even more in case of statistical 
comparison between different conditions. 

Various EMD based algorithms has been suggested in 
neuroscientific and biomedical studies for purposes such 
as (i) sleep state classification from EEG data [3], (ii) 
estimation of the phase information for detecting the phase 
synchrony [4], (iii) estimation of the phase locking in time 
and frequency [5], and (iv) assessment of the directional 
coupling with the combination of partial directed coher-
ence (PDC) [6]. 

Apart from the demonstration of an adaptive data-
driven approach for the band limit determination of PD 
LFP data, this study aims to show that MEMD leads to 
“meaningful” oscillatory components and reveals power 
based “weak”, but physiologically significant components 
at very high frequencies (>100 Hz), which may otherwise 
remain unnoticed. 
 

2. MATERIALS AND METHODS 
 
2.1. Data 
Our study involved data from a 69-year-old male PD pa-
tient who underwent surgery for DBS. The data was part 
of a dataset used in a previous study [7]. The patient 
showed typical motor symptoms, such as rigidity and 
akinesia, while responding positively to pharmacological 
treatment with levodopa. He participated in the measure-
ment with his written informed consent. The study was 
approved by the local ethics committee and was in accord-
ance with the Declaration of Helsinki. 

Electrodes were implanted bilaterally in the STN. 
There was no specific task, but the patient was instructed 
to rest on a comfortable chair with the least movement 
possible. Data were acquired simultaneously with an 
online bandpass filter of 0.1- 660 Hz and digitized at the 
sampling frequency of 2000 Hz. A notch filter was applied 
at 50 Hz (-/+ 2 Hz) to get rid of electrical power line noise. 

Three bipolar LFP channels (1, 2, 3) were constructed 
by referencing the four adjacent contacts of the DBS elec-
trode (Medtronic Inc, Minneapolis, MN USA, model 
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3389). The labels 1 and 3 denote the most ventral and the 
most dorsal channels, respectively. Data were acquired 
both when the patient was not under dopamine medication 
(OFF) and after he was given dopaminergic medication 
(ON). Muscle activity was inspected to assure that the 
analyzed LFP data corresponds to “total rest”, i.e., contain-
ing neither movement nor tremor. For this study, we used 
thirty seconds length LFP data collected from the left STN 
both for OFF and ON conditions. 

 
2.2. MEMD 
MEMD is a multivariate extension of empirical mode 
decomposition (EMD) [8], an adaptive, data-driven meth-
od that decomposes the signal into supposedly “meaning-
ful” components called Intrinsic Mode Functions (IMF). 
Unlike the traditional decomposition methods such as 
Fourier and wavelet analysis, EMD extracts the oscillatory 
components without the requirement of fixed a priori basis 
functions, as they are characterized intrinsically by the 
input data dynamics. An IMF representing the different 
dynamic oscillatory modes in the signal is by definition 
required to have the following properties: (i) the number 
of extrema and zero-crossings should differ by one at most 
and (ii) the mean value of envelopes obtained from local 
minima and local maxima should be zero [8]. These prop-
erties for an IMF are practically satisfied by an iterative 
“sifting process”. 

MEMD aims to separate an N-dimensional (channel) 
data x into M oscillatory components yi, i.e., IMF’s: 

x(n) = yi (n)
i=1

M

∑ + r(n)  

where r stands for the residual. It operates the sifting pro-
cess on the projections of the multichannel signal, which 
are called rotational modes. The projection on rotational 
modes enables the same number of uniform scales making 
MEMD suitable for multichannel data.  
     We used a noise-assisted version of MEMD, where we 
concatenate data with two additional random Gaussian 
white noise channels. Noise-assistance was reported to 
make MEMD more robust to noise and mode mixing [2]. 
The MEMD algorithm was executed via an open source 
Matlab function package provided in [9]. 
 
2.3. Determination of band limits 
Oscillatory activity in the established frequency bands 
used in the clinics and research are known to be of limited 
validity due to the particular variability across individuals, 
tasks and medical conditions. One of the apparent discrep-
ancies in the current PD LFP literature is the choice of 
frequency bands themselves and their ranges. For instance, 
beta band is regarded as low beta (13-20 Hz) and high beta 
(20-30 Hz) by [10], while in other studies high beta was 
taken as (20-35 Hz) [11] and low beta as (10-18 Hz) [12]. 
The upper limit of high beta could even be considered up 
to 40 Hz [13]. Many other studies consider the beta band 
without any further subdivision. However, they assumed 

different lower and upper limits such as 11-30 Hz [14], 15-
30 Hz [15], and 14-35 Hz [16]. Similar discrepancies in 
the literature can also be observed for other frequency 
bands. Moreover, the diversity in the choice of frequency 
bands takes into account neither the variability between 
different medical conditions, nor the task at hand, e.g., 
resting vs. moving.  

  
Fig. 1.  An example showing  a frequency band defined by the 

MEMD method. 

     We suggest the following simple algorithm for the 
determination of the limits (Fig. 1): 
      (i) Estimate the spectrum of the IMF corresponding to 
one oscillatory band. 
      (ii) Determine the minimum and maximum frequencies 
corresponding to power levels as 3 dB smaller than the 
spectral peak value. 
      For spectrum estimation, we used Welch’s method 
with a Hanning window of 1024 samples length (corre-
sponding to frequency resolution of ~0.5 Hz) with the 
overlapping length amounting to 512 samples. We also 
used the multitapering method with a frequency resolution 
of 20 Hz producing time-frequency portraits for frequen-
cies > 100 Hz. 
 
2.4. Marking cross-frequency relations 
Recent studies [17,18] have shown a consistent coupling 
between the amplitude of high frequency oscillations 
(>100 Hz; HFO) and the phase of beta band activity in PD 
LFP data. The strength of this coupling changes both with 
respect to the location of the LFP contact within the STN 
and the medical condition. Here, we suggest a scheme 
investigating whether the IMF components corresponding 
to HFO and beta also show the previously described cou-
pling behavior. This would give us clues about the biolog-
ical plausibility of the obtained IMF’s. Our scheme com-
prises the following steps: 
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Fig. 2. Spectra of raw data (left) and IMF’s (right) for all contacts 

 

 

 
Fig. 3. Time-frequency portraits for high frequencies (top) and the IMF corresponsing to HFO (bottom). The range for the top 

figure was take above 100 Hz for the activity to be visible; this was not necessary for the IMF’s. 
 

 
      (i) Determine the time points in the IMF corre-
sponding to HFO where its amplitude is higher than a 
threshold and accept these points as “events”. Threshold 
was chosen as one standard deviation further from the 
mean of the amplitudes. 
     (ii) Average the raw LFP data for segments centered 
on these events. The segment length was taken as 0.5 s. 
     (iii) Repeat the steps i) and ii) for surrogate data. The 
surrogate data are obtained by averaging the raw data 
around randomly chosen events. 
     (iv) Subtract the spectrum of the event-triggered 
average from that of the surrogate. 
   The resultant spectrum is expected to peak in the beta 
band because of the supposed coupling relation de-
scribed above. 

 
 

3. RESULTS 
 
We determined the band limits from the obtained IMF’s 
spectra for OFF and ON conditions (Table I). MEMD 
detects two different beta bands being low and high for 
the patient under study. Abnormally high beta power 
decreases with the dopamine for all three contacts. The 
computed band limits are not that different with respect 
to the medical conditions with the exception of HFO, 
whose range is drifted to higher frequencies with dopa-
mine. This result tallies with earlier PD LFP studies 
[18]. Interestingly, gamma band activity is not observa-
ble in the medial contact LFP2 in either condition. 

Please notice that it is hard to reach these inferences 
of oscillatory bands solely from observing the raw spec-
tra of the contacts. For instance, although LFP3 shows 
two bands around the beta range (Fig. 2, left panel), this 
is not so obvious for the other channels. Even more 
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Fig. 4. Phase – amplitude coupling portrait using a classical method (left). The suggested algorithm showed that IMF 

corresponding to HFO band may also indicate this coupling as it led to averaged data with beta spectrum (right). 
 
 
uncertain is the case of the weaker gamma band activity 
and HFO band, which can be captured by the use of 
MEMD (Fig. 2, right panel). Classical FFT based spec-
tral estimation from raw data is not sufficient to discern 
HFO activity. This is primarily because of the much 
stronger activity occupying the low frequency bands of 
theta, alpha, and beta. 

Even when one focuses on high frequencies and 
plots solely the power for over 100 Hz, HFO activity 
cannot really be discerned. Using multitapering spec-
trum estimation method on raw data could give some 
insight for HFO activity (Fig. 3, top panel). Neverthe-
less, HFO activity is still far from discernible, especial-
ly for the contact LFP1. In any case, one may reliably 
detect them through IMF’s thanks to the separation 
capability of MEMD (Fig. 3, bottom panel). 

We also wanted to explore whether the IMF’s repre-
sent the oscillatory components properly. Do they con-
serve the phase and nonlinear features inherent in the 
neural signals? This is important as neural signals cou-
ple to each other through nonlinear interactions. Recent 
PD LFP studies have demonstrated consistently that 
beta phase is coupled to the HFO amplitude. Physiolog-
ical meaning of this coupling is under fresh debate [19]. 
Fig. 4 (left panel) illustrates that our data also exhibit 
this coupling behavior. When the data were only locked 
for the points where HFO amplitude is above the 
threshold, a beta oscillation could be obtained (Fig. 4, 
right panel). Interestingly, the coupled spectrum has two 
peaks, which correspond to low and high beta bands. 
This result evidences that IMF’s keep the inherent non-
linear nature of the oscillatory components reliably, 
even for very high frequencies. 
 

4. CONCLUSION 
 
MEMD has been applied on multichannel electrophysi-
ological data for different purposes such as identifica-
tion of steady-state visual evoked potentials, tracking 

alpha activity in BCI applications and denoising previ-
ously [2].   
       In this study, we pointed out applications specific 
to PD LFP studies. Accordingly, determination of data 
specific frequency band limits and disclosure of the 
weak inconspicuous oscillatory components were 
demonstrated. We also showed that the components 
obtained by MEMD conserve their coupling properties. 
Particularly, the phase–amplitude coupling between 
beta and HFO bands could be shown from the IMF 
corresponding to HFO. This was assessed in order to 
validate that IMF’s obtained from the LFP data are 
biologically meaningful. Moreover, our algorithm im-
plies that solely by using IMF’s, one may detect phase-
amplitude couplings by MEMD without having to filter 
data in the whole spectrum. 

Employment of the suggested schemes may over-
come aforementioned discrepancies in the choice of 
oscillatory bands in LFP’s acquired from the subcortical 
regions of the brain. This is important for the consisten-
cy over studies. More importantly, there may be rele-
vant oscillatory components hidden in the high end of 
the spectrum. We showed that HFO’s in some channels 
might be unseen when the classical spectrum methods 
are applied. Instead, MEMD could reliably identify 
them for all channels. This allowed one to track the 
oscillatory power concentrated solely for HFO’s in 
time. Future studies should be conducted to test the 
suggested schemes for larger datasets of different sub-
jects and movement conditions. 
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Table 1. Band limits for OFF and ON conditions for the three 

contact pairs. 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 OFF ON 
 LFP 1 LFP 2 LFP 3 LFP 1 LFP 2 LFP 3 
theta 4-8 4-8 2-8 2-6 2-6 2-8 
low beta   14-20 14-20 12-20 12-20 12-18 12-18 
high beta 23-31 23-31 23-29 23-31 21-31 23-31 
gamma 47-63 - 78-

102 
47-61 - 76-92 

HFO 248- 
258 

264- 
270 

254- 
270 

305-
322 

264-
287 

254-
285 
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