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ABSTRACT
We consider the problem of signal recovery under a sparsity
prior, from multi-bit quantized compressed measurements.
Recently, it has been shown that allowing a small fraction
of the quantized measurements to saturate, combined with
a saturation consistency recovery approach, would enhance
reconstruction performance. In this paper, by leveraging
the potential sparsity of the corrupting saturation noise, we
propose a model-based greedy pursuit approach, where a
cancel-then-recover procedure is applied in each iteration to
estimate the unbounded sign-constrained saturation noise and
remove it from the measurements to enable a clean signal
estimate. Simulation results show the performance improve-
ments of our proposed method compared with state-of-the-art
recovery approaches, in the noiseless and noisy settings.

Index Terms— Multi-Bit Quantized Compressed Sens-
ing, Saturation, Sparse Corruptions, Sign Constraint, Cancel-
Then-Recover, Greedy Pursuit

1. INTRODUCTION

Quantized Compressed Sensing (QCS) is an emerging re-
search field addressing the practical implementation of Com-
pressed Sensing (CS) paradigm by considering measurements
discretization arising from quantization. This discretization
process implies two kinds of acquisition noise: quantization
noise of bounded energy, due to the quantizer finite preci-
sion, and saturation noise of large and potentially unbounded
amplitudes, arising from the quantizer finite dynamic range.

In addition to convex optimization based recovery algo-
rithms [1–4], some papers tackle the sparse recovery problem
from QCS measurements via a greedy approach. To address
the extreme case of 1-bit CS, where all measurements satu-
rate, the iterative algorithms CoSaMP [5] and IHT [6] have
been tuned, through Matching Sign Pursuit (MSP) in [7] and
Binary Iterative Hard Thresholding (BIHT) in [8], respec-
tively. The key ingredient for these algorithm customizations
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is to incorporate a sign consistency objective function to pe-
nalize sign violation. MSP and BIHT consider one sided `2-
norm and one sided `1-norm penalties, respectively.

The multi-bit quantization case is more subtle, because
saturated and unsaturated measurements are contaminated
with noise of different nature. In [9], the authors proposed
Quantized IHT (QIHT) where a unified penalty function is
considered to account for quantization and saturation incon-
sistency. In [4], the authors proposed a rejection approach
and a saturation consistency approach, based on CoSaMP. In
the rejection approach, saturated measurements, regarded as
outliers that would significantly deteriorate CS reconstruction
performances, are simply discarded, and a Least Squares (LS)
objective function is applied on the remaining measurements.
Alternatively, saturated and unsaturated measurements are
decoupled within the Saturation Consistency SC-CoSaMP
method, where two objective functions are used: an LS ob-
jective related to the unsaturated measurements and a one
sided `2-norm objective to account for saturation violation.

In the aforementioned papers, soft consistency was pre-
ferred to hard consistency, because of its robustness to noise
and support mis-identication. Moreover, it has been shown
in [8], that different choices of penalty functions to account
for inconsistency, provide different performances, depending
on the noise level. These choices also rely on the existence of
a tractable analytical expression of the penalty subgradient.

In this paper, we propose a different approach to solve
the sparse recovery problem from quantized and possibly sat-
urated measurements. By leveraging the sign characteriza-
tion of the saturation errors, we implicitly promote their spar-
sity even within the saturated measurements. We consider a
greedy approach that provides an appropriate framework to
apply the cancel-then-recover approach of [10].

The rest of this paper is organized as follows. Section II
presents the QCS model with saturation. Section III provides
the framework and motivation behind this work. Section IV
proposes a novel sparse recovery method that incorporates the
cancel-then-recover approach within the greedy pursuit. Sec-
tion V demonstrates the performance gain of the proposed
method, via simulation results. Finally, Section VI concludes
the paper.
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In the sequel, we will use bold-face lowercase letters for
vectors and bold-face capital letters for matrices. For an or-
dered set T , T (i) denotes its ith element, |T | denotes its car-
dinality, T c denotes its complement. Notations xT and ΦT

stand for the sub-vector of elements of x, and the sub-matrix
of columns of Φ, indexed by T , respectively. The support of
x, denoted supp(x), corresponds to the ordered set of indices
of its nonzero entries and ‖x‖0 , |supp(x)|. The `1-norm
of x ∈ RN , is defined as ‖x‖1 ,

∑N
n=1 |xn|. x(K) is the

best K-term approximation of x, obtained by keeping the K
largest entries of x and zeroing the others. The sign operator
sign is applied on vectors, componentwise. The hard thresh-
olding operatorHλ sets the components of a vector, below λ,
to 0. The symbols � and � denote entry-wise inequalities.

2. QUANTIZED COMPRESSED SENSING MODEL

We consider that compressed sensing measurements z ∈ RM
are quantized using a b-bit uniform midrise quantizer operator
Qb with quantization interval δ, 2b quantization levels and a
saturation level g = 2b−1δ, such that:

y = Qb(z), z = Φx, (1)

where x ∈ RN is a K-sparse signal with K � N , Φ ∈
RM×N with M < N is the measurement matrix, and y ∈
RM is the quantized measurements vector.

The model in (1) can be rewritten into

y = Φx + e + n, (2)

where e and n ∈ RM account for the saturation noise and the
quantization noise, respectively. At a low saturation rate, e is
a sparse but large error term (em = 0 or |em| > δ

2 ) corrupting
a fraction of the measurements z and n as a dense but small
error term (|nm| ≤ δ

2 ) affecting all its entries.
Let S denote the known support of the potentially saturated
measurements corresponding to |zm| ≥ g − δ

S , {m ∈ {1, . . . ,M} : |ym| = (g − δ/2)}, |S| = S.

Then, we have eSc = 0. By exploiting partial knowledge of
the support of e, the model in (2) can be further adjusted as

y = Φx + IS eS + n, (3)

where I is the identity matrix of order M . Let E denote the
unknown support of the corruption term e, i.e. that of effec-
tively saturated measuremets

E , {m ∈ {1, . . . ,M} : g ≤ |zm|}, |E| = E.

Then, we have E ⊆ S, and y.S∩Ec represents artificially sat-
urated measurements, i.e. their pre-quantized measurements
lie within the quantization regions of the extremum quantiza-
tion levels. Formally, we have nE = 0, |nEc | � δ

2 , and

e.Ec = 0, |eE | � δ
2 , sign(eE) = −sign(yE). (4)

Let Θ = ISΛ ∈ RM×S , s = ΛeS ∈ RS where Λ ∈ RS×S
is a diagonal matrix whose diagonal elements are given by
−sign(yS), and Σ = supp(s) = {i ∈ {1, . . . , S} : S(i) ∈
E}. Then, by incorporating (4) into the model in (3), we get

y = Φx + Θs + n, where ssupp(s) � δ
2 . (5)

3. GREEDY FRAMEWORK AND MOTIVATION

We propose to customize the iterative greedy algorithm
CoSaMP [5] to perform sparse recovery from quantized
and partially saturated measurements. The basic CoSaMP
algorithm solves the following optimization problem:

min
x̃∈RN

‖y −Φx̃‖22 s.t. ‖x̃‖0 ≤ K. (6)

After initialization, each CoSaMP iteration repeats five steps:
1. Compute a proxy of the residual as ΦT r,

2. Identify a support candidate Ω by merging the best 2K-
term sparse approximation support of the proxy and the
signal support from the previous iteration,

3. Compute a signal estimate using LS on candidate support
x̂Ω ← argminx̃∈R|Ω| ‖y −ΦΩx̃‖22,

4. Prune the support via the best K-term approximation,

5. Update the residual r = y −Φx̂.
In the QCS framework, as the saturation noise is poten-
tially unbounded, saturated measurements could be regarded
as outliers. LS fitting is known to be sensitive to outliers,
which would dramatically degrade the overall performance
of CoSaMP. A simple solution to overcome this issue is to
discard saturated measurements and reconstruct the signal us-
ing the remaining ones, as suggested in [4], via the so-called
rejection approach. However, this approach is suboptimal in
comparaison with the conventional setting where the satura-
tion level is increased so that saturation never occurs.

Alternatively, the authors in [4], showed that allowing a
fraction of measurements to saturate would be advantageous,
provided that information held by saturated measurements is
appropriately incorporated within the reconstruction process.
They considered the saturation consistency constraint

−ΘTΦx � g − δ. (7)

This constraint is softly incorporated into the signal estima-
tion step of SC-CoSaMP, as follows:

x̂Ω ← argmin
x̃∈R|Ω|

‖y.Sc−ITScΦΩx̃‖22+‖
(
(g−δ)1+ΘTΦΩx̃

)
+
‖22,

(8)
where 1 denotes the unit vector and the function (·)+ acts by
zeroing the negative elements. In this minimization subprob-
lem, the first term accounts for the fitting error, with respect to
ySc , due to quantization noise and the second one-sided `2-
norm term penalizes saturation violation with respect to yS .
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Allowing saturation violation ensures feasible solutions even
with erroneous signal support candidate or in the presence of
noise. However, the saturation consistency approach of [4]
remains suboptimal. Indeed, saturated measurements, even
those artificially saturated, don’t contribute in the LS objec-
tive and saturation is only addressed as a consistency con-
straint. Hence, apart from missing a fraction of the quantized
measurements because they artificially saturate, the consis-
tency approach fails to minimize the underlying saturation
noise. Moreover, on the one hand, hard SC-CoSaMP is prone
to infeasibility, especially in the presence of signal noise. On
the other hand, in soft SC-CoSaMP, it is not clear whether the
one-sided `2-norm penalty is optimal. Besides, the choice of
the penalty parameter that balances the conventional objective
and the saturation consistency violation, is not addressed.

4. PROPOSED SPARSE RECOVERY FROM QCS
MEASUREMENTS VIA GREEDY PURSUIT

In order to retain all the potential of the saturated measure-
ments, we build upon (5) and propose a sparse recovery ap-
proach that solves the following optimization problem:

min
x̃∈RN
s̃∈RS

‖y −Θs̃−Φx̃‖22 s.t. ‖x̃‖0 ≤ K, (9)
{
s̃i ∈ {0} ∪ [ δ2 ,+∞[.

In this formulation, y−Θs̃ could be seen as a clean measure-
ments vector obtained by removing the saturation noise pro-
ducing annoying outliers. The key observation is that all M
cleaned measurements contribute to the LS objective. More-
over, potential overfitting, caused by saturation noise support
over-identification (E ⊆ S) is mitigated, by modeling the cor-
ruption term s as non-negative with possibly null elements.

4.1. Key Ingredients for the Proposed Method

We propose to solve problem (9) via a model-based CoSaMP,
where the signal estimation and the residual computation
steps are modified according to the model in (5). A key en-
abler for the proposed approach, is that at each iteration of
the greedy pursuit, the signal estimation task is performed
by considering a reduced cardinality support candidate Ω
such that |Ω| ≤ 3K <M . Hence, the underlying system is
overdetermined. As the signal of interest is corrupted by a
non-negative, presumably sparse and unbounded saturation
noise term, we borrow from [10] and [11]. In the context
of error correction coding, the authors of [10], proposed a
method to recover a general (not sparse) signal from its noisy
and corrupted encoded measurements. Formally, the received
distorted codeword is modeled as b = Ax + e + n where
A ∈ RM×N with M > N , is the coding matrix, e is a
gross but sparse noise term and n is a small but dense noise
term. By leveraging the sparsity of the corruption term, the
following cancel-then-recover decoding approach was pro-
posed in [10] to recover x. First, the signal term is canceled

from the measurements, by projecting them, using the matrix
Q, onto the orthogonal complement of the space spanned by
the columns of A, such that QTA = 0. Then, the sparse
corruption term is estimated as

ê = argmin
ẽ∈RM

‖ẽ‖1 s.t. ‖QT (b− ẽ)‖22 ≤ ε. (10)

Finally, x is recovered using a clean LS solution x̂ =
(ATA)−1AT (b− ê).

This cancel-then-recover approach is not directly appli-
cable in our context. Recall that partial support information
is already incorporated into the observation model (5) by
substituting the M -dimensional saturation noise e by the S-
dimensional potential saturation noise s. Given artificially
saturated measurements, only (S − E) elements of the satu-
ration noise s are effectively zeros and s could be thought as
a non-negative E-sparse vector with potentially high fraction
of sparsity E

S . Hence, recovering the corruption term s using
the `1-norm minimization in (10), is likely suboptimal.

Fortunately, incorporating a sign-constraint into the LS
problem, leading to the Non-Negative Least Squares (NNLS)
formulation, is shown to be an effective sparsity-promoting
regularization [11]. If b = Ax + n, and x � 0, then
x̂(NNLS) = argminx̃�0 ‖b−Ax̃‖2. Besides, NNLS does not
require a tuning parameter. Subsequent hard thresholding of
the NNLS solution, yielding the thresholded NNLS (tNNLS)
solution x̂(tNNLS) = Hλ(x̂(NNLS)), where λ is the mini-
mum amplitude prior on sparse x, shows a performance gain
with regard to support recovery. Particularly, tNNLS outper-
forms the threshold non-negative `1-norm minimization, in
the difficult regime characterized by a high sparsity level.

4.2. Proposed Greedy Pursuit Method

We propose to apply the cancel-then-recover approach of [10]
within the signal estimation step of CoSaMP, by substituting
the LS corruption estimation step in (10) by a tNNLS estima-
tion with λ = δ

2 , where partial knowledge of the saturation
noise sparsity pattern is incorporated into sparse Θ.

At each iteration, once a support candidate is identified,
we pretend to cancel out the signal contribution from the mea-
surements, using an orthobasis Q of the orthogonal comple-
ment of the column span of ΦΩ. Then, we aim to estimate
the saturation noise, using a NNLS estimation instead of the
`1-norm minimization of (10), as

ŝ← argmin
s̃�0

‖QTy −QTΘs̃‖22. (11)

By leveraging the sign constraint on the saturation noise,
NNLS is expected to perform better, albeit no explicit `1 reg-
ularization is employed, especially given that the corruption
term s is not sufficiently sparse. Moreover, NNLS does not
require any parameter tuning whose choice is problematic es-
pecially in the first iterations of the greedy pursuit for which
the prior signal cancelation step is potentially erroneous.
Upon convergence, we estimate the saturation noise support
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as Σ = supp
(
Hδ/2(ŝ

(NNLS))
)
. Then, we refine the signal

estimate, by considering a last run of the cancel-then-recover
procedure using ΘΣ and Ω = supp(x̂).
Algorithm 1 summarizes the proposed modified CoSaMP.

Algorithm 1 Proposed Modified CoSaMP
Require: CS matrix Φ, quantized measurements y, sparsity level K
1: x̂← 0, r← y {initialize}
2: while halting criterion false do
3: p← ΦT r {form signal proxy}
4: Ω← supp(p(2K)) ∪ supp(x̂) {identify signal support}
5: {bΩ, ŝ} ← CANCEL-THEN-RECOVER(ΦΩ,Θ,y)

bΩc ← 0 {estimate signal on candidate support}
6: x̂← b(K) {prune signal support}
7: r← y −Θŝ−Φx̂ {update residual according to model}
8: end while
9: Ω← supp(x̂) {focus on signal support}

10: Σ← supp(Hδ/2(ŝ)) {prune saturation noise support via t-NNLS}
11: {x̂Ω, ŝΣ} ←CANCEL-THEN-RECOVER(ΦΩ,ΘΣ,y) {refine estimates}

12: function CANCEL-THEN-RECOVER(A,B,y)
13: Q← null(AT ) {form⊥ compl.}
14: s← argmins̃�0 ‖Q

T (y −Bs̃)‖22 {estimate corruption via NNLS}
15: b← (ATA)−1AT (y −Bs) {estimate signal via clean LS}
16: return b, s

17: end function

5. SIMULATION RESULTS AND DISCUSSIONS

In this section, we demonstrate the performance gain of our
proposed CoSaMP based recovery method, in comparaison
with hard and soft Saturation Consistency CoSaMP based
methods [4], denoted here, hSC-CoSaMP and sSC-CoSaMP,
respectively. We implement the signal estimation step within
hSC-CoSaMP and the proposed method, using the general-
purpose convex optimization package CVX [12] and the
lsqnonneg MATLAB routine, respectively. In each trial, the
M × N measurement matrix Φ is generated from an i.i.d.
Gaussian distribution with mean zero and variance 1/M .
The K-sparse signal x, with support selected uniformly at
random in {1, . . . , N}, is drawn from an i.i.d Gaussian dis-
tribution and then normalized to have unit `2-norm. For all
experiments, we set N = 1000 and K = 20 and measure the
reconstruction performance by the Recovery Signal-to-Noise-
Ratio RSNR , 10 log10

(
‖x‖22
‖x−x̂‖22

)
= −20 log10(‖x − x̂‖2)

where x̂ is the reconstructed signal.
In the first experiment, we consider a noiseless setting,

where the quantizer is the unique source of measurements
distortion. Figure 1 depicts the RSNR of the three algo-
rithms, averaged over 100 trials, as a function of the satu-
ration level g varied over the range [0, 0.4], for b = 2, 4
and M = 200, 700. Solid lines, dashed lines and dashed
dot lines, follow the scale on the left vertical axis, while dot
lines are associated with the right vertical axis. The satura-
tion rate S/M , averaged over 1000 trials, depends on g, δ and
also M through the matrix normalization of Φ. All RSNR
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Fig. 1: RSNR versus g, with N = 1000, K = 20, b = 4, and
different bit-depths b and measurement regimes M .

curves tend to meet as the saturation rate get closer to zero.
Indeed, in the unsaturated quantizer regime, all three meth-
ods reduce to the basic CoSaMP method. The three meth-
ods achieve their optimal RSNR performances at a nonzero
saturation rate, which confirms the benefit of saturated mea-
surements for sparse recovery. The optimal saturation rate for
each method, achieves the best tradeoff between model fit-
ting and saturation consistency, depending on how saturated
measurements are handled within each reconstruction proce-
dure (model-based, penalty regularization and hard consis-
tency constraint for the proposed method, sSC-CoSaMP and
hSC-CoSaMP, respectively). Indeed, an increasing fraction
of saturated measurements would not only help strengthen-
ing the regularization process in each method by reducing
the feasible solution space, but it would also implies a re-
duced quantization noise for a given bit-depth. At the same
time, the saturation rate should remain small enough i.e. the
saturation errors should be sparse enough, in order to guar-
antee a sufficient number of the more precise measurements
(i.e. those unsaturated) to guarantee more reliable reconstruc-
tion. Moreover, the optimal saturation rate increases with
the number of measurements M . For instance, for b = 4,
the proposed method archives a maximum RSNR of 32dB
and 42dB, at a saturation rate of 38% and 64%, at the low
and high measurement regimes, respectively. The proposed
method outperforms the sSC-CoSaMP method with a higher
maximum RSNR (around 5dB gain, for b = 2), at a higher
optimal saturation rate. In other terms, the proposed method
better leverages the potential of saturated measurements in
the reconstruction process, and provides higher robustness
to quantization noise. The proposed method achieves lower
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Fig. 2: RSNR versus g, with ISNR = 10, N = 1000, K =
20, and different bit-depth b and measurement regimes M .

performance gain over the hSC-CoSaMP method, in terms
of maximum RSNR. However, it provides a substantial im-
provement by maintaining feasibility. Indeed, hSC-CoSaMP
is prone to severe failures, due to potential support candidate
mis-identification. This is shown by broken curves reflect-
ing potential infeasibility, near its optimal saturation rate, in
the high measurement regime, and negative RSNR reflecting
local minimum convergence, towards high saturation rates.

In the second experiment, we consider a noisy setting,
where an interference u ∈ RN is present on the input sig-
nal. Formally, we acquire y = Qb(Φ(x + u)). We gen-
erate the signal noise from an i.i.d. Gaussian distribution
with mean zero and variance σ2

u. We tune the signal noise
variance σ2

u, to obtain a desired Input Signal-to-Noise-Ratio,
defined as ISNR , 10 log10

(
E[‖x‖22]

E[‖u‖22]

)
= −10 log10(Nσ2

u).
Figure 2 depicts the average RSNR of the three algorithms,
with the same experimental setup as Fig. 1, except that an
ISNR of 10dB is considered. As expected, hSC-CoSaMP
shows a dramatic performance decrease and becomes the less
reliable method. The proposed method provides the best per-
formances, especially at the high measurement regime and for
b = 2, where it shows more robustness to coarse quantization,
with 3dB and 5dB gain in terms of RSNR in comparaison
with sSC-CoSaMP and hSC-CoSaMP, respectively.

6. CONCLUSION

We presented a novel approach to recover sparse signals from
their partially saturated QCS measurements. We capitalized
on the sign characterization of the saturation noise and its par-
tial support information, to provide a model based greedy pur-

suit recovery method based on CoSaMP. We demonstrated, by
numerical simulations, the performance gain of our proposed
method in comparaison with the soft and hard saturation con-
sistency reconstruction methods, in terms of recovery SNR,
in the noisless and noisy setting.
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