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ABSTRACT
Deep learning, recently, has been successfully applied to im-
age classification, object recognition and speech recognition.
However, the benefits of deep learning and accompanying
architectures have been largely unknown for BCI applica-
tions. In motor imagery-based BCI, an energy-based feature,
typically after spatial filtering, is commonly used for classifi-
cation. Although this feature corresponds to the estimate of
event-related synchronization/desynchronization in the brain,
it neglects energy dynamics which may contain valuable
discriminative information. Because traditional classifica-
tion methods, such as SVM, cannot handle this dynamical
property, we proposed an architecture that inputs a dynamic
energy representation of EEG data and utilizes convolutional
neural networks for classification. By combining this network
with a static energy network, we saw a significant increase in
performance. We evaluated the proposed method and com-
pared with SVM on a multi-class motor imagery dataset (BCI
competition dataset IV-2a). Our method outperforms SVM
with static energy features significantly (p < 0.01).

Index Terms— Convolutional Neural Network, Deep
Learning, Motor Imagery, Brain-Computer Interface, EEG

1. INTRODUCTION

Machine learning algorithms for EEG are not as old as algo-
rithms used for speech, image and text. They are mainly
known for their application in brain-computer interfaces
(BCI) such as motor imagery (MI), steady state evoked poten-
tials (SS-EP) and event-related potentials (ERP) [1]. When
using machine learning for BCI, important properties of EEG
which discriminates it from other data must be taken into
consideration (i.e. non-stationarity, low signal-to-noise ratio,
channel correlation). In most BCI settings, the main goal in
BCI is to discriminate brain states in a single recording or
trial or in the most limited number of trials possible. This
raises the issue of how to expose information that can be seen
in average ensembles but not in single trials. Furthermore,
because task recording is time-consuming, the number of

recorded samples are limited in each session. Solutions to
these key challenges discriminates machine learning for BCI
from its application for other data.

Proposed algorithms for MI-BCI classification mainly
include common spatial patterns (CSP) [2], which com-
bines spatial filtering and static energy feature extraction,
and in some cases, multi-band temporal filtering [3] for fre-
quency band selection. As a result, static energy is the widely
used representation of EEG for many BCI problems such as
domain adaptation [4], channel selection [5], dealing with
session-to-session non-stationarity [6] and performance esti-
mation [7]. Consequently, a common negation seen in these
algorithms is neglect for the dynamics of the signal during
the trial; when static energy features are extracted, the energy
dynamics is compacted into a single number and hence, tem-
poral information is discarded. However, Pfurtscheller [8]
showed that tongue and foot motor imagery do not have a ev-
ident drop in energy, such as the left or right motor imagery,
but rather a energy pattern in certain channels and frequen-
cies. Therefore, a methodology that can exploit information
temporally can be used in collaboration with energy features
to build a classifier which can then handle a wide variety of
tasks that have discrimination in time, energy or both.

In recent years, Deep Learning (DL) has become a grow-
ing trend in the area of machine learning and artificial intel-
ligence. Changes in activation functions [9], regularization
methods to escape overfitting [10], incorporating data and
model parallelism [11], new architecture modifications [12],
optimized libraries and software for DL research [13] and
large amounts of data have all contributed to the success of
DL and deep architectures in recent years. In our case, we
searched for architectures and DL methods which were suit-
able for classifying dynamic energy based features and have
chosen the convolutional neural network (CNN) [14] as the
methodology. Convolution, by nature, slides on input dimen-
sions to detect a pattern based on a learned kernel and can be
used a methodology to detect events in signal processing.

CNNs have been used for EEG processing and classifica-
tion [15, 16] but not in the context of MI-BCI and four-class
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classification. The main contribution of this paper is design
and analysis of a parallel convolutional-linear neural network
for 4-class motor imagery classification. In the following sec-
tions, we describe how to represent a EEG signal in which can
capture energy dynamicity. A parallel CNN and linear archi-
tecture is then designed to input both static and dynamic en-
ergy features. The overall architecture is evaluated and clas-
sification results for the well-known BCI competition IV-2a
dataset [17] are shown.

2. METHODOLOGY

2.1. Representing EEG Time Series

Event-related synchronization/desynchronization (ERS/ERD)
in the motor cortex are the activity associated with motor-
imagery. ERD is defined as the relative difference of energy
before and after cue and equivalent to the subject modulating
the amplitude of the recorded EEG signal during a motor-
imagery task. A sample ERD/ERS map can be seen in Figure
1, showing the consistency of activity during a four-class
motor imagery class for selected channels. In some tasks,
such as left/right motor imagery, a time-consistent pattern of
energy drop can bee seen whereas in feet/tongue imagery, a
dynamic pattern of energy can be seen (see [8] for a detailed
analysis). This dynamicity of EEG energy can be interpreted
as change in the energy envelope of the signal and therefore,
it is rational to use this envelope as the representation of the
signal. Here, we propose to use the energy of the analytic
signal computed by the Hilbert transform. In static energy
feature algorithms, rather than fitting the absolute energy of
each trial, the relative energy of each channel is considered as
the feature. In our work, we also follow the practice by divid-
ing the energy signals by the by sum energy of all channels,
x̂c/

∑NC

c=1 x̂ce, where x̂c is a single channel energy envelope,
x̂ce is the channel energy and NC is the number of channels.
Eventually, the logarithm of the energy is taken to obtain a
normal distribution before feeding into the network. From
here on, we use the term dynamic energy for this representa-
tion and static energy for trial segment energy throughout the
paper.

2.2. Designing the Architectures

Generally, when designing an architecture, the input format
must be taken into account. Static energy features have a for-
mat of xe ∈ RNsC×C , where C is the number of classes and
NsC is the selected channels. For dynamic energy, a format
of xt ∈ RT×Nsc×C is considered, where T is the number
of time samples in the representation. There is an option of
concatenating the data on the class dimension, C, and then
feeding into the network, which we have chosen to consider
for static energy features.

In terms of architecture, a three-layered multilayer per-
ceptron (MLP), is used for static energy features. Our simu-

Fig. 1: Sample ERD/ERS plot for a four-class task in selected EEG
channels. In color version, red indicates desynchronization and blue
indicates synchronization. It is evident that patterns for left/right
hand MI differs from feet/tongue MI, supporting the fact that a static
energy is not sufficient for some tasks.

lations showed that a linear support vector machine (SVM) re-
sults in comparable performance relative to [3], hence, deep-
ening the classifier would not have had significant improve-
ment. For dynamic energy features, a convolutional neural
network is designed with the following configuration:

• Parallel convolutional layers with a one dimensional ker-
nel in time. This kernel size means that the output of each
activation function will save information for each channel.

• Average pooling. In CNN architectures for images, max
pooling is used because of its spatial invariance-inducing
property. But training the EEG data with max pooling re-
sulted in poor results. Therefore, average pooling is used.

• Convolutional layer with a one dimensional kernel in
time. In this stage the kernel is chosen as the same size as
input and can be viewed as template matching.

• MLP before and after concatenation. MLP after the con-
volutional layers is an embedding that can be viewed as a
sort of modified energy feature. After concatenating data
from the convolutional and MLP layers above, the data is
fed into another MLP for classification.

For both static and dynamic energy architectures, dropout reg-
ularization is used. Dropout, proposed by [10], is a semi-
ensemble learning regularization that helps network to not
overfit. The activation functions chosen for the two archi-
tectures is a Rectified Linear Unit (ReLU ). Each architec-
ture is trained individually using Stochastic Gradient Descent
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Fig. 2: Proposed Architecture. Grey boxes indicate the modules
inside is trained independently.

(SGD) and a Negative Log-Liklihood (NLL) criterion. Final
decision making is done on the maximum value of each class
from each independent architecture. A depiction of the de-
scribed architecture can be seen in Fig.2. Torch7 [13] is used
to implement the architectures and training.

3. PREPROCESSING AND DATASET

Preprocessing, especially spatial filtering, is a crucial stage in
EEG analysis. Here, we adopt the Filter-Bank CSP (FBCSP)
[3] preprocessing stages for our data. Simplified, the FBCSP
process is a) applying a bank of 9 filters from 4 to 40Hz with
a width of 4Hz and b) Computing CSP for each frequency
band using equation 1:

max
w∈RNC

wTC1w

wT (C1 + C2)w
(1)

where w is the spatial filter, NC is the number of channels and
C1 and C2 are the channel covariance matrix of two distinct
tasks (classes). The static energy features are calculated using
var(wTX), with var being the variance operator on time and
X ∈ RNC×T . Eventually, c) a feature selection algorithm,
typically mutual information, is performed. Feature selection
is carried out to select the most discriminative spatial filters
and frequency bands.

BCI competition IV-2a [17] data is used as the dataset
to evaluate the proposed architecture. This 9-subject dataset
consists of 4-class (C = 4) MI data (Right hand, Left hand,
Feet, Tongue) with each class having 72 samples for train and
the test data having the same amount of data. We decide to

follow the competition nature, therefore, test data is not used
for training. The CSP algorithm is performed on a 0.5 to 2.5 s
segment after cue and 4 pairs of spatial filters are picked for
each frequency band. 8 pairs of features are selected from the
36 features as the input of the MLP network (NsC = 8). This
choice of spatial filters and features is based on [3]. The same
spatial filters for each of the selected static energy features
are applied on a segment of 0 to 3 s after cue and the log-
energy representation described in section 2.1 is extracted.
Preprocessing stages are implemented using MATLAB, ver-
sion R2012a.

4. RESULTS

A support vector machine (SVM), applied on the static energy
features, is used as the benchmark and implemented using
LIBSVM [18]. To test significance, we choose the Wilcoxon
signed-rank test. This non-parametric hypothesis test is used
for cases where, due to limited samples, values do not fol-
low a normal distribution. In our case, because of the limited
number of subjects, this test is ideal. It should be noted that
the reported p-value is not accurate due to the limited number
of samples.

Accuracies are achieved by averaging over 10 models, Ta-
ble 1. Results of independently trained static and dynamic
energy networks and their combination are presented so these
three results can be used to interpret which feature has more
contribution to the accuracy of the combined network in each
individual. Overall, based on the mean accuracy, there is
an increase in classification performance and p-value of the
Wilcoxon signed-rank test falls into the p < 0.01 range and
therefore, shows the accuracy increase is significant. An in-

SVM MLP CNN CNN‖MLP
Sub1 79.16 75.69 78.82 80.55
Sub 2 52.08 48.96 53.47 53.82
Sub 3 83.33 75.35 82.64 84.72
Sub 4 62.15 64.93 60.76 64.58
Sub 5 54.51 52.08 59.03 59.03
Sub 6 39.24 39.93 43.75 44.1
Sub 7 83.33 82.99 82.64 84.03
Sub 8 82.64 84.72 83.68 86.8
Sub 9 66.67 67.36 81.25 77.77
mean 67.01 65.78 69.56 70.60

p-value - 0.4065 0.2127 0.0091

Table 1: Classification results over BCI competition IV-2a test data.
SVM column is the benchmark static energy features using an SVM
classifier. MLP and CNN columns show results of linear and con-
volutional neural network using static and dynamic energy features
respectively. CNN‖MLP shows the combined network using both-
features. The p-value for the Wilcoxin rank-signed test can be in
row p-value. Results show a significant increase in classification ac-
curacy when a static and dynamic energy is used together.
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teresting observation is the amount of increase in the accuracy
value in some subjects, specifically subjects 5, 6 and 9. When
checking the table for the reason of increase, it is evident that
the convolution network and therefore, dynamic energy fea-
tures are boosting performance in these subjects.

With the improved performance, we sought to look into
in what aspects the CNN is contributing to the overall re-
sults. For this, we derive the individual classification accura-
cies which is defined as the number of correct classifications
for one class over the number of samples in that class and
also, the average confusion matrix over all subjects. These
values can be seen in Table 2a and 2b. In 2a, we see class
accuracies for the SVM given static energy feature and the
CNN given dynamic energy features. It shows that the main
strength of the CNN network is in classifying the feet and
tongue class without compromising the classification of right
and left classes much and therefore, balancing the accuracies
and overally increasing performance. Table 2b also supports
this by showing the overall reducion of confusion between
tongue/feet and left/right classes.

5. DISCUSSION AND FUTURE WORK

We have proposed a parallel linear-convolutional architecture
for the analysis of motor imagery data. In terms of static
energy classification, our network does not outperform the
benchmark methodology and although the average accuracy
of dynamic energy features is higher, the increase is not con-
sistent. Combining these two methods, however, results in
consistent increases in almost all subjects. This confirms that
energy dynamics contains discriminative information which
cannot be seen in energy features alone and some subjects
benefit from using energy dynamics as a feature.

Our algorithm is not perfect in several aspects and can be
improved: heavy pre-processing of data, choice of architec-
ture and network parameters. For these items, we propose the
following research directions and future work:
• Network-based implementation of pre-processing stages

• Hyper-parameter optimization for parameter selection

• Modified architecture based on combination of static and
dynamic energy
Furthermore, deep architectures, due to there high learn-

ing capacity, have gained their success by being trained on
large amounts of data. Unfortunately, limitation on gathering
data for individual subjects is a barrier in EEG research. If
more subject-specific data can be collected or the current data
augmented in a way that can capture the non-stationary nature
of EEG data, better classification results can be achieved.

Classification aside, there is one other element in BCI re-
search that is valuable: interpretability of learned algorithms.
The value of these interpretations is clear when these sys-
tems are used for medical diagnosis and monitoring such as
changes in spatial patterns in stroke patients [19] or ADHD

[20]. In these applications, machine learning techniques and
their interpretation are not only needed but vital. We hope to
have a deeper investigation into the meaning of learned net-
work parameters.
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