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ABSTRACT

A new boolean compressive sensing method for solving the
group-testing problem is proposed. The conventional method
has the problem that the estimation performance is degraded
in the case that positive elements change in the middle of
tests because the results of the tests before a change-point
are inconsistent with those of the tests after the change-
point. To solve the problem, the proposed method detects
the latest change-point of positive elements, and it finds pos-
itive elements by using only the results of the tests after
the change-point. To detect the change-point, the proposed
method makes use of the fact that the distribution of the
results depends on the number of positive elements. Ex-
perimental simulation indicates that the proposed method
outperforms the conventional method on the condition that
positive elements change in the middle of tests.

Index Terms— group testing, compressive sensing,
change-point detection

1. INTRODUCTION

Group testing is the well-known problem that attempts to dis-
cover a sparse subset of positive elements in a large set of
elements by using a small number of tests. Each test con-
sists of three processing steps: (1) selecting elements for a
pool on the basis of a certain method, (2) mixing the selected
elements into the pool, and (3) observing a single Boolean
result by testing the pool. When the proportion of positive
elements is small, a small number of the tests on the mixed
pool are sufficient to detect the positive elements; that is, all
the elements need not be tested directly. Group testing as a
subject dates back to the work of Dorfman [1] in 1943, dur-
ing the Second World War. Dorfman developed this approach
in order to test soldiers’ blood for syphilis. Group testing has
applications such as blood screening, deoxyribonucleic acid
(DNA) sequencing, and anomaly detection in computer net-
works [2]. To protect the security in wide areas such as sta-
tions, airports, etc., the authors have proposed a system for
finding the locations where dangerous substances exist in a
short time [3]. The proposed system is based on group test-
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ing by using a number of pipes installed around the area and
a single mass spectrometer. Air samples are taken from mul-
tiple pipes at the same time using a different combination of
pipes each time, the mixed samples are analyzed by the mass
spectrometer, and the locations of dangerous substances is es-
timated from the time series of the mass spectrometry signal
by group testing. The proposed approach can achieve rapid
detection of substances in the area being monitored without
requiring a large number of expensive mass spectrometers.
A new method for practical application of the system is pro-
posed in this paper.

Traditionally, group testing has been regarded as a com-
binatorial problem. As for this problem, many researches
about the upper and lower bounds on the number of tests re-
quired to find all the positive elements have been done. A set
of information-theoretic bounds for group testing with ran-
dom mixing was established by Malyutov [4, 5], Atia and
Saligrama [6], Sejdinovic and Johnson [7], and Aldridge et al.
[8]. In addition, several tractable approximation algorithms,
such as one based on belief propagation [7] and one based on
matching pursuit [9], have been proposed.

In recent years, group testing has drawn interest from the
active research area of compressive sensing. Compressive
sensing solves a kind of underdetermined linear equation,
namely, y = Ax, where x is an unknown high-dimensional
vector to be estimated, A is a given mixing matrix, and y
is a given low-dimensional observed vector. The problem
with compressive sensing is similar to that with group testing
from the viewpoint that both of them are underdetermined
problems such that an unknown high-dimensional vector is
decoded from an observed low-dimensional vector. How-
ever, while compressive sensing is defined in a real vector
space, group testing is defined in a Boolean vector space.
To improve the performance of group testing by using com-
pressive sensing, Malioutov and Malyutov [10] proposed a
method for converting group testing into compressive sensing
through linear-programming relaxation. As for this conver-
sion method, #; minimization imposes the sparsity constraint
to the solution and solves the uncertainty of the underde-
termined problem. It thus outperforms other conventional
methods (i.e., the method based on belief propagation [7],
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the method based on matching pursuit [9], etc.). In addition,
to solve the problem that the number of positive elements is
unknown in advance, some approaches changing the mixing
matrix adaptively, called adaptive group testing [11], have
been proposed. However, the conventional methods assume
that positive elements does not change in the middle of tests,
and the estimation performance is degraded in the case that
positive elements change because the results of the tests be-
fore a change-point are inconsistent with those of the tests
after the change-point. Also, in the application for location
estimation of substances, the locations of substances change
in the middle of tests.

To improve the robustness to change of positive elements,
a method for group testing is proposed here. The proposed
method detects the latest change-point of positive elements,
and it finds positive elements by using only the results of the
tests after the change-point. To detect the change-point, the
proposed method makes use of the fact that the distribution
of the results depends on the number of positive elements.
Experimental simulation indicates that the proposed method
outperforms the conventional method [10] on the condition
that positive elements change in the middle of tests.

2. PROBLEM STATEMENT

To state the problem, first, the following notation is fixed. N
is the number of elements, of which a subset of size K is
positive. Non-positive elements are called negative. x,, = 1
indicates that the n-th element is positive, and z,, = 0 in-
dicates that the n-th element is negative. For convenience,
T =[r1,22, " ,a:N]T is written. T tests, where T' < N, are
then performed. As explained above, in each test, some ele-
ments are selected from all the elements, and they are mixed
into the same pool. This selection is defined by a mixing ma-
trix, A, which is a 7' x N binary matrix. The element of
the ¢-th row and the n-th column of A is given as ay,, where
at,, = 1indicates that the n-th element is mixed into the pool
of the ¢-th test, and a;, = 0 indicates that the n-th element
is not mixed into the pool of the ¢-th test. The observed sig-
nal of each test, ¢, is a single Boolean value, y; € {0,1}. y;
is obtained by taking the Boolean sum of {z,|a;, = 1}. For
convenience, Yy = [y1,y2," - ,yT]T is written. The vector
notation

y = Ax ey

is used in the following.

The problem of group testing is to estimate unknown vec-
tor « from given A and y. In addition, the noise of the obser-
vation is considered. The noise includes both the false pos-
itive and the false negative. The former represents the case
that y» = 1 even when the Boolean sum of {x,|at, = 1} is
0. The latter represents the case that y, = 0 even when the
Boolean sum of {x,|at, =1} is 1. This observation with

1203

noise is represented by
y=ArQw, 2)

where v is the Boolean vector of errors, and ® means the
XOR operation.

A number of works have studied the design of A [2]. For
example, K -separating and K -disjunct are well-known prop-
erties of A. When these properties hold,  can be recovered
exactly. However, such design is often unsuitable for prac-
tical situations because it assumes that the exact number of
the positive elements (K) is necessary before group testing.
Moreover, if all T" tests cannot be carried out, the performance
of the method will not be guaranteed [8]. Therefore, in many
works, A is simply designed by the Bernoulli random design,
where each element of A is generated independently at ran-
dom with a probability p corresponding with the size of the
pool. That is, a4, is 1 with probability p, and ay,, is 0 with
probability 1 — p. Bernoulli random design is also used in this
study.

In a number of applications such as location estimation
of substances, the unknown vector  may change in the mid-
dle of tests, particularly, @ may change at an occasional time
point, in other words, a “change-point”. One of the problems
of group testing is that, on the condition that the unknown
vector x changes at the change-point, the elements of y cor-
responding to the tests before the change-point are inconsis-
tent with those corresponding to the tests after the change-
point, and x can not be estimated accurately. The present
study thus focuses on an method of the improvement of ro-
bustness against change of . Here, we assume that all the
tests have a particular order relation of the time ¢, and « can
be rewritten as x(¢) considering change of x(t). The task is
to estimate the current unknown vector «(7") from A and y.

3. BOOLEAN COMPRESSIVE SENSING FOR
GROUP TESTING

3.1. Compressive sensing

Malioutov and Malyutov [10] proposed a conversion of
group testing into compressive sensing through a linear-
programming relaxation. This conventional method is the
basis of our method, which is explained in this section.
Many works on compressive sensing have been reported
[12]. In this study, a sparse signal, x € RY is assumed, and it
is estimated from 7" measurements y € R” by using a random
measurement matrix A, where ' < N. Compressive sensing,
namely, decoding x, uses the following ¢, minimization:

mxin|w\o subjectto y = Awx. 3)

However, Eq. (3) is a NP-hard problem, which cannot be
solved practically. Candes et al. [12] proved that if certain
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conditions hold, & can be decoded exactly by the following
£ minimization:

H:lzi;n |z|1 subjectto y = Awx. 4
Since ¢; minimization is a simple linear-programming prob-
lem, a number of practicable algorithms can be used to solve
it.

3.2. Noise-free case

Equation (1) is similar to constraint equation (4). However, it
is not a linear equation in a real vector space but a Boolean
equation. It is shown in [10] that (1) can be replaced with a
closely related linear formulation: 1 < Azx,and 0 = A 7z,
where Z = {t|y; = 1} is the set of positive test results, and
J = {t|y: = 0} is the set of negative test results. A linear-
programming formulation similar to Eq. (4) is therefore given

as
n

subjectto 0 <x <1,
Azx >1, Asxz=0 (®)]

3.3. Noisy case

Because (5) does not model noisy cases, the performance of
the method is degraded in noisy cases. One version of [10]’s
method thus covers the noisy case by adding slack variables
as follows:

{2 o]

subjectto 0<xz <1, 0<& <1, 0<¢E,
Arzx+§:>1, Agx=§,, (6)
where € = [§1,---,&r] is the vector composed of the slack

variables, and « is the regularization parameter that balances
the amount of noise and the sparsity of the solution.

4. PROPOSED METHOD

The conventional method assumes that « does not change by
time, so the current x, i.e., (7'), can not be estimated ac-
curately. To improve the robustness against change of x(¢),
the proposed method detects the latest change-point ¢(7'), and
estimates «(7") using only the results of only the tests after
¢(T). Here, ¢(T) is defined as t such that x(t — 1) # x(t),
and z(t) = z(t + 1) = --- = x(T). To detect the change-
point ¢(T), the proposed method performs a likelihood ratio
test as follows:

P(H1;yt,~--
P(Ho;ytw"

1— P(Ho; yy,- -
_ ( 03 Yt 73/T) > 9 (7)
P(Ho;ye, -+, yr)

7yT)
,YT)
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where H is the hypothesis that there is no change-point in
the tests of 7 = t---T, Hy is the hypothesis that there is a
change-point in the tests of 7 = ¢--- 7T, and 6 is a threshold
parameter. P(Ho;yy,- - ,yr) can be rewritten as:

P(Ho; Yt 5 yr)
x P(HOuyh : 7yT)
= Plx(t)=---= m(T),yt,...,yT)
< Ple@)]g=-=l=(Dlg,ye, - yr). (8

In the application of location estimation of substances, not
only the combination of positive elements but also the number
of positive elements changes at most change-points because
the change of x is caused by substance diffusion. Therefore,
we approximate (8) as follows:

P($(t) == m(T)aytv "'7yT)
~ P(zt)y="=x(T)|y: Y- yr)

€))

Based on the approximation of (9), the proposed method can
make use of the fact that the distribution of y depends on
|z(t)|,. (9) is converted as follows:

P(lz®)ly = = =(D)ly, e, - yr)
= ZP(\m(t)lo ==z = K,y -, yr)
= ZHP (7)) = K)
K 7=t
T
< [[ Py |2(r)|, = K). (10)
Here, we can assume that P(|z(7)|, = K) is a sparse

prior distribution, for example, the Poisson distribution
K _—X 3

P(lz(1)|, = K) = 25—, where X is the parameter of

the distribution. Furthermore, P(y.; |x(7)|, = K) can be

estimated by summation of y,, Y (7) = fo 7 Yg. which

is the sufficient statistics of the Bernoulli distribution, as

follows:

P(yr;|e()]y = K)

KN
= {1 (1-=-&=n=LTn

N
KZleam
x{[1-2em=lTm
N N

where F' is the frame size for summation of y,. Thus, each
time the result of the test is obtained, the proposed method
calculates (11), (10), and (8), and it evaluates (7) of each t,

N Y(r)

2F+1-Y (1)

,» (1D



23rd European Signal Processing Conference (EUSIPCO)

and it regards the latest test satisfying (7) as the latest change-
point ¢(T).
Finally, we rewrite (6) as follows:

T
> &

min E Ty +Q
€ |5

t=c(T)
subjectto 0<x <1, 0<¢&¢7 <1, 0<¢&,,
Az x+§&7 >21, Ajx=E&,, (12)

where c s the latest change-point, and Z, = {t|y: = 1,¢(T) < t}

is the set of positive test results, and 7, = {t|y: = 0,¢(T") < t}
is the set of negative test results. By calculating (12), the pro-
posed method estimate the (7).

5. EXPERIMENTAL RESULTS

The performance of the proposed method was evaluated by
simulation. In particular, the averaged probability of correct
estimation was computed over 100 trials as a function of 7',
for N = 150. N elements were generated independently for
each trial. In this simulation, the probability p of the Bernoulli
random design of A was 0.333, noise with i.i.d 3% probabil-
ity of flipping each bit of y was added, A was 1.5, F' was 15,
and o was 1.0. The proposed method was compared with the
conventional method [10]. To evaluate the robustness against
change of the unknown vector x(t), the simulation was con-
ducted for three cases:

Casel x(t) changed from |z(7)|, = 0 to |[x(7)[, = 2.
Case2 x(t) changed from |x(7)|, = 1 to |x(7)|, = 4.
Case3 x(t) changed from |x(7)|, = 4 to |z(7)|, = 1.

In all the cases, the change-point, ¢ was 100. As for the con-
ventional method, the latest 20, 50, and 100 tests were used,
and all the T tests were used. As for the proposed method, at
each test, ¢(T") was estimated, and the latest (7' — ¢(T')) tests
were used.

The performance of the proposed method in the case of
no noise was computed. Figure 1 shows the probability of
exact recovery in Casel, Figure 2 shows that in Case2, and
Figure 3 shows that in Case3. “20 TESTS”, “50 TESTS”,
“100 TESTS”, and “ALL TESTS” mean respectively the case
that the latest 20 tests were used, the case that the latest 50
tests were used, the case that the latest 100 tests were used,
and the case that all the tests were used in the conventional
method [10]. “PROPOSED” means the proposed method.

First, these results show that the probability of exact re-
covery of “ALL TESTS” did not increase along with the in-
crease of number of tests after the change-point ¢ = 100.
This indicates that the case that all the tests were used in the
conventional method is not robust against change of positive
elements. In all the cases, the probability of exact recovery of
the proposed method, i.e., “PROPOSED”, converged to 1. In
contrast, that of “20 TESTS” in Casel, that of “50 TESTS” in
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Fig. 1. Probability of exact recovery as a function of number
of tests, T, in the case that «(t) changed from |z(7)|, = 0 to
|x(7)|, = 2. N = 150, the change-point ¢ was 100, and 3%
noise was added.
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Fig. 2. Probability of exact recovery as a function of number
of tests, T', in the case that = (¢) changed from |x(7)|, = 1 to
|x(7)|, = 4. N = 150, the change-point ¢ was 100, and 3%
noise was added.

Case2, and that of “50 TESTS” in Case3 converged to a value
lower than 1. These results represent that the fixed numbers
of the tests that were used were too small in these cases. In all
the cases, the probability of exact recovery of “100 TESTS”
converged to 1, however, the speed of the convergence was
slower than that of the proposed method. These results repre-
sent that the fixed number of the tests that were used was too
large in these cases. Thus, it is indicated that the proposed
method is robust against change of positive elements.

6. CONCLUSION

A new method for solving the group-testing problem is pro-
posed. To improve the robustness to the condition that posi-
tive elements change in the middle tests, the proposed method
detects the latest change-point of positive elements, and it
finds positive elements by using only the results of the tests af-
ter the change-point. To detect the change-point, the proposed
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Fig. 3. Probability of exact recovery as a function of number
of tests, T', in the case that «(¢) changed from |z(7)|, = 4 to
|z(7)|, = 1. N = 150, the change-point ¢ was 100, and 3%
noise was added.

method makes use of the fact that the distribution of the re-

sults

depends on the number of positive elements. An exper-

imental simulation showed that the proposed method outper-
forms the conventional method on the condition that positive
elements change in the middle tests.
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