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ABSTRACT

Over the last decades, machine learning techniques have been

an important asset for detecting nonlinear relations in data.

In particular, one-class classification has been very popular in

many fields, specifically in applications where the available

data refer to a unique class only. In this paper, we propose

a sparse approach for one-class classification problems. We

define the one-class by the hypersphere enclosing the sam-

ples in the Reproducing Kernel Hilbert Space, where the cen-

ter of this hypersphere depends only on a small fraction of

the training dataset. The selection of the most relevant sam-

ples is achieved through shrinkage methods, namely Least

Angle Regression, Least Absolute Shrinkage and Selection

Operator, and Elastic Net. We modify these selection meth-

ods and adapt them for estimating the one-class center in the

RKHS. We compare our algorithms to well-known one-class

methods, and the experimental analysis are conducted on real

datasets.

Index Terms— One-class classification, kernel methods,

shrinkage methods

1. INTRODUCTION

Statistical machine learning, such as kernel methods, have

been widely used in the past decades to discover nonlinear re-

lations and hidden patterns in data, and they have been applied

in many fields for classification and regression problems [1].

In particular, one-class classification algorithms gained a lot

of interest specifically in industrial applications, where the

data related to the malfunctioning modes are difficult to ob-

tain, and the only available data designate the normal func-

tioning modes of the studied system. One-class classifiers

learn the normal behavior of the system, and provide deci-

sion functions in a way to accept as many normal samples as

possible and to reject the outliers [2]. One-class algorithms

have been applied in many fields, namely for face recognition

applications [3], seizure analysis from EEG signals [4], and

recently for intrusion detection in industrial systems [5, 6].
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Several formulations have been proposed to solve one-

class classification problems. Schölkopf et al. proposed in [7]

the one-class Support Vector Machines (SVM), in which they

separate the data from the origin with maximum margin using

a hyperplane. This approach is greedy in terms of computa-

tional cost since it requires to solve a constrained quadratic

programming problem. Tax et al. introduced in [8] the Sup-

port Vector Data Description (SVDD) which estimates the hy-

persphere with minimum radius enclosing most of the train-

ing data. This approach requires also to solve a constrained

quadratic programming problem, and it is equivalent to SVM

when the Gaussian kernel is used. A fast approach was intro-

duced in [9] to overcome the computational cost of quadratic

programming problems, but the use of the Euclidean distance

as a novelty measure leads to a high sensitivity towards out-

liers. A sparse approach was proposed in [10], in which the

selection of the most relevant samples is based on the co-

herence criterion. This approach does not require the same

computational costs as one-class SVM, but the sensitivity to-

wards outliers remains unchanged. Hoffman used in [11] the

Kernel Principal Component Analysis (KPCA) for one-class

classification, where the data were projected into the subspace

spanned by the most relevant eigenvectors of the covariance

matrix. Despite the relatively low computational complexity

of the reconstruction error used as a novelty measure, this ap-

proach loses the sparsity of SVM and SVDD.

In this paper, we propose a sparse approach for one-class

classification, where our one-class is defined by a hypersphere

enclosing the samples in a RKHS. The center of the hyper-

sphere is the approximation of the empirical center of the data

in that space, and this sparse center depends only on a small

fraction of the training dataset. Since a good selection of these

samples is crucial to obtain good results in sparse approaches,

this selection is achieved by adapting well-known shrinkage

methods, namely Least Angle Regression [12], Least Abso-

lute Shrinkage and Selection Operator [13], and Elastic Net

[14]. We modify these algorithms to the computation of the

center in the RKHS. The remainder of this paper is organized

as follows. Section 2 describes the proposed one-class frame-

work and the adapted shrinkage methods. An extension to

the Mahalanobis distance in proposed in Section 3. Section 4

discusses the results on real datasets, and Section 5 provides

conclusion and future works.
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2. PROPOSED ONE-CLASS FRAMEWORK

Consider a training set of samples xi, for i = 1, 2, . . . , n,

in a d-dimensional input space X . Let K be the n × n
kernel matrix with entries k(xi,xj) = φ(xi)

Tφ(xj) for

x1, · · · ,xn ∈ X , where φ(x) is the mapping function to

a RKHS of some given reproducing kernel k(·, ·). The ex-

pectation of the mapped samples, namely E[φ(x)], can be

estimated with the empirical center in the RKHS, namely

cn = 1
n

∑n

i=1 φ(xi). We define the one-class by the hyper-

sphere enclosing the samples in the RKHS, and we approxi-

mate cn with a sparse representation cA. The sparse center

cA is a linear combination of some of the mapped samples,

namely cA =
∑n

j=1 βjφ(xj), where the coefficients βj are

obtained as detailed next. We also define the decision function

of any sample x by its distance in the RKHS to the center cA,

and we fix a threshold in order to classify it as outlier or nor-

mal. The expression of the Euclidian distance in the RKHS is

given by:

‖φ(x)−cA‖22 = k(x,x)−2

n∑

i=1

βik(xi,x)+

n∑

i,j=1

βiβjk(xi,xj).

In order to obtain a sparse approach, only a small frac-

tion of the coefficients βj in the center’s expression has to be

nonzero. We need to minimize the error of approximating cn
with cA in a way to get a sparse representation of the training

dataset. Therefore, we solve the following optimization:

argmin
βj

∥∥ 1
n

n∑

i=1

φ(xi)−
n∑

j=1

βjφ(xj)
∥∥2

2
, (1)

subject to some sparsity-inducing constraints. We propose to

revisit three well-known shrinkage approaches, namely Least

Angle Regression, Least Absolute Shrinkage and Selection

Operator, and Elastic Net. These shrinkage approaches have

been used for feature selection in regression to solve opti-

mization problems of the form: argminβ ‖y−Xβ‖22 subject

to some constraints, such as
∑ |β| cannot exceed some prede-

fined threshold. These methods used for the sample selection

induce sparsity, and only a small number of the coefficients

remains nonzero. In the following, we adapt these methods to

solve the optimization problem of equation (1), thus selecting

the most relevant samples among the training dataset, where

only the corresponding coefficients remain nonzero.

2.1. Least Angle Regression

The Least Angle Regression (LARS) is a model selection al-

gorithm that builds a model sequentially by augmenting the

set of the most relevant samples one sample at a time. Let

ĉAk
be the estimation of the sparse center in the subspace A

of the most relevant samples at step k, and (cn − ĉAk
) the

current residual. LARS finds the sample having the largest

absolute correlation with the residual (cn−ĉAk
), and projects

φ(xi)

φ(xj)

cn

ĉA0 ĉA1

ĉA2

θ
θ

Fig. 1. An illustration of the successive LARS estimates in

a simple 2-dimensional space, where the algorithm starts at

ĉA0
. In this example, the first residual (cn − ĉA0

) makes a

smaller angle with φ(xi) than with φ(xj), so we start moving

in the direction of φ(xi). The next step at ĉA1
, the current

residual (cn − ĉA1
) makes equal angles θ with φ(xi) and

φ(xj), so we have to move in a direction that preserves this

equiangularity such as ĉA2
.

the other samples on this first one. LARS repeats the selec-

tion process until a new sample has the same correlation level

with the residual, and continues in a direction equiangular be-

tween these samples until a third one enters the set of the most

correlated samples, and so on. An example of the successive

LARS estimates is illustrated in figure 1, where the algorithm

starts at ĉA0
, and the equiangular vectors are updated in a way

to preserve equal angles with the original axes.

Let X = (φ(x1), φ(x2), . . . , φ(xn)), and let XA de-

notes the samples of the set A having the greatest absolute

current correlations, and KA the |A| × |A| corresponding

kernel matrix, with |A| the cardinality of A. The expres-

sion of the current estimate of the sparse center has this form:

ĉA = Xβ̂. The algorithm begins with ĉA0
= 0, and updates

the center once at a time. The vector of current correlations is

defined as follows:

ĉorr = XT (cn−ĉA) =
1

n

n∑

i,j=1

k(xi,xj)−
n∑

i,j=1

β̂jk(xi,xj).

The equiangular vector needed for the projection operation

has the following form:

uA = XAwA,

where wA = AAG
−1
A 1A is the weight vector making equal

angles with the columns of XA, GA = sTKAs is a matrix

related to the set A, s denotes the vector of the signs of the

current correlations, and AA = (1T
AG

−1
A 1A)−

1

2 . After find-

ing XA, AA, and uA, the current estimate ĉA is updated to

ĉA+ = ĉA + γ̂uA using the equiangular vector, where

γ̂ = min
j=1,··· ,|A|

{ Ĉ − ĉorrj
AA − aj

,
Ĉ + ĉorrj
AA + aj

}
,

23rd European Signal Processing Conference (EUSIPCO)

136



havingmin the minimum over the positive components, aj an

element of the inner product vector defined by

a = XTuA = XTXAwA =

n∑

i=1

|A|∑

j=1

k(xi,xj)wA,

and Ĉ = maxj{|ĉorrj |}. Finally, the coefficients β are up-

dated as follows:

βnew = β̂ + γ̂sTwA. (2)

The main drawback of LARS is when dealing with highly

correlated samples, which may limit its application to high

dimensional data.

2.2. Least Absolute Shrinkage and Selection Operator

The Least Absolute Shrinkage and Selection Operator

(LASSO) minimizes the residual sum of squares under a con-

straint on the ℓ1-norm of the coefficient vector. LASSO solves

the following optimization problem:

argmin
βj

∥∥ 1
n

n∑

i=1

φ(xi)−
n∑

j=1

βjφ(xj)
∥∥2

2
+ λ‖β‖1, (3)

for a given λ > 0, where the ℓ1-based regularization term in-

duces sparsity in the solution. LASSO shrinks the estimated

coefficients towards the origin and sets some of them to zero,

in a way to retain the most relevant samples and to discard

the other ones. In fact, the LASSO solutions can be gener-

ated by some modifications of the LARS algorithm. Unlike

in LARS, the coefficients in LASSO cannot change signs dur-

ing the update since they are piecewise linear, and the sign of

any nonzero coefficient βj must agree with the sign sj of the

current correlation ĉorrj for any j [12]. To update the coeffi-

cients as in equation (2), we have βj(γ) = β̂j + γsjwAj for

any j. Therefore, βj(γ) changes sign at:

γj = − βj

sjwAj

,

having the first such change occurring at γ̃ = minγj>0{γj}.

The sign restriction is violated when γ̃ < γ̂, and βj(γ) cannot

be a LASSO solution; βj(γ) has changed sign while cj(γ)
has not. The sample having the corresponding index j is

removed from the set of the most relevant samples, namely

A = A \ {xj}, and the algorithm moves to the next equian-

gular direction. Therefore, this modification allows the active

set to increase or decrease one at a time until the LARS algo-

rithm leads to all LASSO solutions.

2.3. Elastic Net

The elastic net (LARSEN) is a LARS-derived regulariza-

tion method that linearly combines the ℓ1 and ℓ2 penalties of

LASSO and ridge methods. Similarly to LASSO, LARSEN

does both continuous shrinkage and variable selection, and

it produces a sparse model. In addition, unlike LASSO,

LARSEN has a grouping effect where strongly correlated

samples are in or out of the model together.

The entire LARSEN solution path can be directly com-

puted from the LARS algorithm. Indeed, the naı̈ve LARSEN

optimization problem is defined as follows:

argmin
βj

∥∥ 1
n

n∑

i=1

φ(xi)−
n∑

j=1

βjφ(xj)
∥∥2
2
+λ1‖β‖1+λ2‖β‖22,

for λ1, λ2 > 0. This problem becomes a pure LASSO opti-

mization when λ2 = 0, and a simple ridge regression when

λ1 = 0. The naı̈ve LARSEN problem can be transformed into

an equivalent LASSO problem as in equation (3), where the

parameter λ is replaced by λ1/
√
1 + λ2 [14]. Therefore, as

detailed in the previous section, a simple modification in the

LARS algorithm leads the LASSO solution path. This kind

of approximation incurs a double amount of shrinkage intro-

ducing unnecessary extra bias, compared with pure LASSO

or ridge shrinkage. In order to improve the prediction per-

formance and undo shrinkage, the coefficients of the naı̈ve

version of LARSEN are rescaled to obtain the LARSEN co-

efficients as follows:

β(LARSEN) = (1 + λ2)β(naı̈ve LARSEN).

Therefore, the LARS algorithm leads to the LARSEN solu-

tion paths. An example that highlights the differences in the

solution paths of LARS, LASSO and LARSEN algorithms is

illustrated in figure 2.

3. EXTENSION TO THE MAHALANOBIS DISTANCE

Since the Euclidian distance is sensitive to the scale in each

direction, we also use the Mahalanobis distance in the deci-

sion function of the classifier. In fact, the Mahalanobis dis-

tance takes into account the covariance in each feature direc-

tion and the different scaling of the coordinate axes [15]. The

Mahalanobis distance is computed in the RKHS as detailed

in [16]:

n∑

k=1

1

λk

( n∑

i=1

αk
i k(xi,x)−

n∑

i=1

αk
i

1

n

n∑

j=1

k(xj ,x)

−
n∑

i,j=1

αk
i βjk(xi,xj) +

n∑

i=1

αk
i

1

n

n∑

j,l=1

βlk(xj ,xl)
)2
,

where nλk and αk are the eigenvalues and eigenvectors of

the centered version of K. We make use of the advantages

in KPCA, and only the most relevant eigenvectors are taken

into consideration while the remaining ones are considered as

noise. We also adopt the kernel whitening normalization of

the eigenvectors as proposed in [17], where the variance of

the mapped data is constant for all the feature directions.
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Fig. 2. The solution paths of LARS, LASSO and LARSEN algorithms. The LARS solution paths are the most unstable, while LARSEN has

smoother solution paths that clearly show the ”grouping effect” advantage of correlated variables over the LASSO.

4. EXPERIMENTAL RESULTS

The proposed one-class approach is tested on two real

datasets from the Mississipi State University SCADA Labora-

tory, the gas pipeline and the water storage tank testbeds [18].

The gas pipeline is used to move petroleum products to the

market, and the water storage tank is similar to the oil storage

tanks found in the petrochemical industry. These real datasets

raise many challenges, where each input sample consists of 27

attributes for the gas pipeline and 24 attributes for the water

storage tank, i.e., gas pressure, water level, pump state, tar-

get gas pressure/water level, PID’s parameters, time interval,

length of the packets, and command functions. Furthermore,

28 types of attacks are injected into the network traffic of the

system in order to hide its real functioning state and to dis-

rupt the communication. These attacks are arranged into 7

groups: Naive Malicious Response Injection (NMRI), Com-

plex Malicious Response Injection (CMRI), Malicious State

Command Injection (MSCI), Malicious Parameter Command

Injection (MPCI), Malicious Function Command Injection

(MFCI), Denial of Service (DOS) and Reconnaissance At-

tacks (RA). See [18] for more details.

The Gaussian kernel is used in this paper, for it is the most

common kernel for one-class problems. The expression of

this kernel is given by k(xi,xj) = exp(− ‖xi−xj‖2

2

2σ2 ), where

xi and xj are two input samples, and ‖ · ‖2 represents the

l2-norm in the input space. The bandwidth parameter σ is

computed as proposed in [6], namely σ = dmax√
2M

, where dmax

refers to the maximal distance between any two samples in

the input space, and M represents the upper bound on the

number of outliers among the training dataset. We compared

our approach with two other approaches, Support Vector Data

Description and Kernel Principal Component Analysis. The

selection of the most relevant samples in the proposed ap-

proach is performed via the aforementioned shrinkage algo-

rithms, namely LARS, LASSO and LARSEN. In each case of

these three approaches, the decision function of the classifier

is defined using the Euclidean distance and the Mahalanobis

distance. The sparse center in the proposed approach depends

only on 10% of the training samples. We tested these algo-

rithms on nearly 100 000 samples related to the aforemen-

tioned attacks, and the detection rates are given in Tables 1

and 2. The Mahalanobis distance outperforms in general the

Euclidean distance, due to the scale sensitivity of the latter

one. LARS and LASSO have nearly the same results, where

LARSEN outperforms both shrinkage algorithms. The best

results are achieved when LARSEN is used to select the most

relevant samples, and the used norm in the decision function

is the Mahalanobis distance. The latter combination gives

better detection rates than the other approaches, especially

SVDD and KPCA, for several types of attacks. Table 3 shows

the estimated time for each algorithm, and it indicates that the

proposed approach is faster than SVDD and KPCA regard-

less of the used shrinkage algorithm. The fastest algorithm

is LARS, and the slowest one is SVDD in which a quadratic

programming problem has to be resolved. Therefore, combin-

ing the Mahalanobis distance with LARSEN leads to the best

detection rates, and it is faster than both SVDD and KPCA.

5. CONCLUSION

In this paper, we proposed a sparse one-class classification

approach, where the selection of the most relevant samples

among the training dataset is achieved through well-known

shrinkage methods, namely LARS, LASSO and LARSEN.

We modified these methods and we adapted their algorithms

to estimate a sparse center in a RKHS. We tested our algo-

rithms on real datasets from the Mississipi State University

SCADA Laboratory, and we compared the results with well-

known one-class classification approaches, namely SVDD

and KPCA. The tests showed that combining LARSEN with

the Mahalanobis distance results in an approach having the

best detection rates and the fastest algorithm.

For future works, a further and more detailed study on the

existing subset selection algorithms is required, since it is a

very important step in sparse approaches in order to obtain

significant results. In addition, multimode classification al-

gorithms could be studied for intrusion detection in industrial
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Table 1. Error detection probabilities for the gas pipeline testbed.

Euclidean distance Mahalanobis distance

SVDD KPCA LARS LASSO LARSEN LARS LASSO LARSEN

NMRI 98.1 98.7 98.3 98.7 99.1 99.1 98.9 99.2

CMRI 99.5 99.8 98.1 98.3 99.2 98.7 98.8 99.5

MSCI 89.1 86.2 55.8 57.3 68.1 71.1 74.5 79.3

MPCI 98.2 98.6 97.1 96.7 97.8 98.2 97.6 98.9

MFCI 89.9 89.3 77.8 80.1 83.6 81.3 82.7 85.9

DOS 96.1 96.8 96.1 96.9 97.1 97.3 97.2 97.5

RA 99.8 99.8 99.1 99.5 99.8 99.6 99.7 99.8

Table 2. Error detection probabilities for the water storage testbed.

Euclidean distance Mahalanobis distance

SVDD KPCA LARS LASSO LARSEN LARS LASSO LARSEN

NMRI 95.1 97.1 93.4 91.7 94.7 97.4 94.1 98.1

CMRI 61.2 75.3 59.1 62.4 69.2 71.8 67.7 74.1

MSCI 97.3 98.1 97.1 97.4 97.9 98.1 98.1 98.3

MPCI 98.6 99.5 98.9 97.9 99.1 99.1 98.4 99.7

MFCI 97.9 99.9 97.1 98.4 99.1 99.1 99.3 99.8

DOS 71.7 79.9 72.3 71.2 74.7 81.1 79.1 82.6

RA 97.8 99.5 98.1 98.4 98.7 99.1 99.3 99.5

systems. Furthermore, one could investigate online versions

of the proposed algorithms in order to improve live detection

in real time applications.

Table 3. Estimated time (in seconds) of each approach.

In this paper

SVDD KPCA LARS LASSO LARSEN

gas 70.23 18.31 9.85 13.93 14.22

water 123.72 20.1 11.79 14.10 15.72
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