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ABSTRACT 
 
Due to the higher requirements associated with Ultra High 
Definition (UHD) resolutions in terms of memory and 
transmission bandwidth, the feasibility of UHD video 
communication applications is strongly dependent on the 
performance of video compression solutions. Even though 
the High Efficiency Video Coding (HEVC) standard 
allows significantly superior rate-distortion performances 
compared to previous video coding standards, further 
performance improvements are possible when exploiting 
the perceptual properties of the Human Visual System 
(HVS). This paper proposes a novel perceptual-based 
solution fully compliant with the HEVC standard, where a 
low complexity Just Noticeable Distortion model is used 
to drive the encoder’s rate-distortion optimised 
quantisation process. This technique allows a simple and 
effective way to influence the decisions made at the 
encoder, based on the limitations of the HVS. The 
experiments conducted for UHD resolutions show average 
bitrate savings of 21% with no visual quality degradations 
when compared to the HEVC reference software. 
 

Index Terms— Just Noticeable Distortion, Rate-
Distortion Optimised Quantisation, Perceptual Video 
Compression, HEVC, UHD 
 

1. INTRODUCTION 
 
With the increasing popularity of Ultra High Definition 
(UHD) video and its emerging adoption in widely used 
video services, new challenges for storing and 
transmitting video arise. The requirements in terms of 
transmission bandwidth and storage capacity of UHD 
video content are significantly higher. Thus, the 
successful distribution of UHD video content is highly 
dependent on the performance of the video compression 
solutions supporting them. 

The state-of-the-art High Efficiency Video Coding 
(HEVC) standard [1], also known as ITU-T 
recommendation H.265, developed by the Joint 
Collaborative Team on Video Coding (JCT-VC), is able 
to achieve remarkable video compression performances 
with respect to its predecessor, Advanced Video Coding 
(AVC) – H.264. However, in order to better accommodate 
the needs of more demanding video formats, higher 
compression efficiency can be achieved by exploiting the 

properties and limitations of the Human Visual System 
(HVS). 

In the past decades, typical video coding solutions 
mainly focused on optimising compression efficiency 
according to the differences between the original and 
reconstructed pictures. The most popular and advanced 
video compression solutions typically run a Rate-
Distortion Optimisation (RDO) algorithm at the encoder 
to select the best coding modes and other essential coding 
elements to build the encoded bitstream. Typically, the 
decisions during the RDO process are made by evaluating 
both the expected bitrate and the expected quality of the 
output video signal after reconstruction, measured 
according to the differences between the original and 
reconstructed frames. 

Since the main objective of video communication 
systems is to present perceptually satisfying video 
information to the final user, it makes sense to optimise 
the compression efficiency of video compression solutions 
according to the perceptual properties of the HVS. 

Many studies and experiments have been conducted in 
the past years aiming at better understanding the way 
humans perceive visual information. The concept of Just 
Noticeable Distortion (JND) is based on the assumption 
that the HVS shows different sensitivities to different 
types of visual information. Image characteristics such as 
spatial frequency, texture patterns and luminance 
variations play an important role in the way images are 
perceived by the human brain. JND models aim to 
quantify these differences and provide thresholds for 
image elements under which changes are not perceived by 
human viewers. 

JND models are therefore a valuable asset when trying 
to adapt video coding solutions according to the 
perceptual properties of the HVS. In this paper, a novel 
technique to integrate the properties of the HVS into 
HEVC-based video compression solutions is proposed. 
This technique is based on a simple, yet effective JND 
model, which is used to improve the way choices are 
made by the Rate-Distortion Optimised Quantisation 
(RDOQ) tool used in the reference HEVC encoder.  

Since the RDOQ process operates at the encoder 
without influencing the syntax of the bitstream, its 
operation does not have to be standardised. Therefore, the 
proposed technique can be easily integrated in any HEVC-
based video compression solution without compromising 
the compliance with the standard. Furthermore, the 
adopted JND model was selected and adapted targeting 
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low computational complexity, allowing its smooth 
integration into an HEVC encoder without significant 
complexity increase. 

The remainder of this paper is organised as follows. 
Section 2 gives an overview of the most relevant 
background work on JND models applied to video 
compression solutions. Section 3 describes the adopted 
JND model, including the constraints that led to its 
selection. Section 4 describes the proposed JND-driven 
RDOQ solution used to drive the encoder’s decisions 
according to the limitations of human perception. Section 
5 presents the performance results achieved by the 
proposed technique and finally Section 6 concludes this 
paper with some final remarks. 
 

2. BACKGROUND WORK 
 
The first advances made in exploiting the HVS properties 
using JND models were made for still images by 
Ahumada and Peterson in [2], where data from previous 
psychophysical experiments were used to define a model 
for visibility thresholds when using Discrete Cosine 
Transform (DCT) decomposition of images. Later, 
Watson [3] proposed the so called DCTune model, where 
the model described in [2] was improved by considering 
image dependent parameters, notably considering 
luminance and contrast masking effects. These models 
aimed to specify perceptually optimised quantisation 
matrices for JPEG image compression. 

In 2005, Yang et. al. [4] proposed a method for pre-
processing prediction residuals based on a pixel domain 
JND model introduced in [5]. The pixel domain JND 
model was used to reduce the prediction residual prior to 
the transform operation. This method was developed for 
the MPEG-2 TM5 encoder. 

Later in 2009, Mak et. al. [6] proposed a similar 
suppression approach to the one in [4], but based on a 
transform domain JND model. The technique consisted of 
discarding the residual coefficients whose absolute values 
were lower than the JND thresholds. This technique was 
integrated on an H.264/AVC encoder. 

Later, Chen et. al. [7] proposed a method for 
macroblock (MB) quantisation adjustment in H.264/AVC 
based on the pixel domain JND model in [5]. This JND 
model was combined with a foveation model to take into 
account both threshold visibility and visual eccentricity. 
The method was used at the MB level to select the optimal 
Quantisation Parameter (QP) and the Lagrangean 
multiplier in the RDO process according to the model. 

In 2011, Naccari et. al. [8] proposed an H.264/AVC-
based perceptual video codec using the JND model 
defined in [9] to adaptively select, at the encoder, the 
quantisation step of each transform coefficient. At the 
decoder, a method was proposed to predict the right 
quantisation step to use for inverse quantisation, to avoid 
additional signalling bitrate. Due to the required 
adaptation in the decoder operation, this technique is not 
compliant with the H.264/AVC standard. This technique 
was further extended to an HEVC video codec in [10]. 

In 2013, Naccari et. al. [11] proposed a new perceptual 
video coding tool used to adjust the quantisation step of 
each transform coefficient based on the HVS luminance 
masking effects. The technique was designed for an 
efficient transmission of the additional luminance masking 
parameters and low-complexity implementation. 

More recently, in 2015, Kim et. al. [12] proposed a 
solution fully compliant with the HEVC standard where 
the model in [9] was adjusted to cope with the different 
transform sizes used in HEVC. The modified JND model 
is then used to lower and suppress the values of the 
transform coefficients before quantisation. An average 
bitrate reduction of around 16% with negligible subjective 
quality loss was reported.  

This paper presents an alternative approach to 
integrate a simple spatial JND model in the encoding 
process of an HEVC encoder capable of significantly 
reducing the associated bitrates and preserving the output 
subjective quality. The complexity introduced by the 
proposed technique is very low, making it particularly 
suitable for UHD video formats. 

 
3. ADOPTED SPATIAL JND MODEL 

 
The proposed solution in this paper adopts a JND-model 
to modify the choices made at the encoder according to 
the limits of visual perception. The adoption of a low-
complexity model was therefore essential to enable the 
proposed solution to be used in practical video 
compression applications. A brief description of the 
adopted JND model is given in this section. 

For complexity reduction purposes, the model in [9] 
was selected and adapted to the different transform sizes 
allowed in HEVC using the method for the adaptation of 
the spatial summation effect in [13]. Nevertheless, since 
the proposed integration technique of the JND model into 
an HEVC encoder is model-independent, the selected 
model can be replaced by a more accurate and 
sophisticated model depending on the complexity 
restrictions of the target application. 

For a given transform block 𝑛, the JND threshold, 
𝑇𝐽𝑁𝐷(𝑛, 𝑖, 𝑗), associated to the transform coefficient with 
indexes (𝑖, 𝑗) is defined as 

As seen in (1), the JND threshold 𝑇𝐽𝑁𝐷(𝑛, 𝑖, 𝑗) is given 
by the product of a base threshold 𝑇𝐵(𝑛, 𝑖, 𝑗), a luminance 
masking factor 𝐹𝐿𝑀(𝑛) and a contrast masking factor 
𝐹𝐶𝑀(𝑛, 𝑖, 𝑗). The following subsections briefly describe 
each of these components of the adopted JND model. 
 
3.1. Base Threshold  
 
The base threshold accounts for the different sensitivity of 
the HVS to distortions added to different spatial 
frequencies. For a given transform block size 𝑁, 
 𝑇𝐵(𝑛, 𝑖, 𝑗) is given by  

𝑇𝐽𝑁𝐷(𝑛, 𝑖, 𝑗) =  𝑇𝐵(𝑛, 𝑖, 𝑗) ∙ 𝐹𝐿𝑀(𝑛) ∙ 𝐹𝐶𝑀(𝑛, 𝑖, 𝑗). (1) 

𝑇𝐵(𝑛, 𝑖, 𝑗) = 𝑆(𝑁) ∙ 1
𝜙𝑖𝜙𝑗

∙
𝐻�𝑓𝑖,𝑗�

−1

𝑟+(1−𝑟)∙cos2 𝜑𝑖𝑗
. (2) 
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where 𝐻�𝑓𝑖,𝑗� is the Contrast Sensitivity Function (CSF), 
𝑆(𝑁) is the spatial summation effect, 𝜙𝑗 and 𝜙𝑖 are the 
DCT normalisation factors and the term 𝑟 + (1 − 𝑟) ∙
cos2 𝜑𝑖𝑗 accounts for the different sensitivity of the HVS 
regarding directionality. All the parameters in (2) were 
computed as in [9], with the exception of the CSF and 
𝑆(𝑁). The adopted CSF is given by 

where 𝑓𝑖,𝑗 represents the spatial frequency, computed as in 
[9], and 𝑓0 = 1.7377, 𝑎 = 1.0465 and 𝑝 = 0.6937 are 
the best fitting parameters to a CSF of this type, according 
to the experiments conducted in [14] for a dataset of 43 
image patterns. The parameters used in [9] were not 
considered in this case since they were empirically 
estimated based on a fixed transform size experiment 
(8 × 8). The 𝑆(𝑁) factor compensates for spatial 
summation, which accounts for the effect of having 
simultaneous distortions over a range of spatial 
frequencies in a given frame area. Similarly to [13], the 
spatial summation effect was modelled as  

in order to adapt the base threshold to the transform size 
used. In (4), the parameter 𝜆 was set to 1.873 according to 
the experiments conducted in [13]. 
 
3.2. Luminance Adaptation Factor 
 
The luminance adaptation factor accounts for the fact that 
visibility thresholds depend on the average brightness 
level of a given block. The HVS is less sensitive to 
changes in brighter and darker backgrounds and therefore 
the visibility threshold in these conditions can be 
increased.  

As in [9], for a given transform block 𝑛, the luminance 
adaptation factor is given by  

 𝐹𝑙𝑢𝑚(𝑛) =

⎩
⎪
⎨

⎪
⎧

(60 − 𝐼)̅
150

+ 1, 𝐼 ̅ ≤ 60

1, 60 < 𝐼 ̅ < 170,
(𝐼 ̅ − 170)

425
+ 1, 𝐼 ̅ ≥ 170

 (5) 

where 𝐼 ̅denotes the average luminance intensity value of 
the pixels inside block 𝑛. 
 
3.3. Contrast Masking Factor 
 
The contrast masking factor accounts for the reduction of 
visual sensitivity in one visual component in the presence 
of another. Typically, distortions are more difficult to 
notice when introduced in areas where texture energy is 
high. Given this, a contrast masking factor is used to 
elevate the threshold of each coefficient in a given block 
depending on the texture characteristics of the visual 
content in this area.  

For the purpose of computing 𝐹𝐶𝑀(𝑛, 𝑖, 𝑗), the Canny 
edge detector [15] is first applied to the whole frame and 

for a given DCT transform block size 𝑁, each block is 
classified as a Plane, Edge or Texture block according to  

𝐵𝑙𝑜𝑐𝑘 𝑡𝑦𝑝𝑒 = �
𝑃𝑙𝑎𝑛𝑒, 𝜌𝑒𝑑𝑔𝑒 ≤ 𝛼
𝐸𝑑𝑔𝑒, 𝛼 < 𝜌𝑒𝑑𝑔𝑒 ≤ 𝛽

𝑇𝑒𝑥𝑡𝑢𝑟𝑒, 𝜌𝑒𝑑𝑔𝑒 > 𝛽
, (6) 

where 𝛼 and 𝛽 are empirically set to 0.1 and 0.2, 
respectively, and 𝜌𝑒𝑑𝑔𝑒 is the density of edge pixels inside 
the block identified by the Canny edge operator. For a 
given coefficient with indexes 𝑖 and 𝑗 inside block 𝑛, the 
final elevation factor is given by  

 𝐹𝐶𝑀(𝑛, 𝑖, 𝑗) =

�
1, 𝑓𝑜𝑟 𝑃𝑙𝑎𝑛𝑒 𝑜𝑟 𝐸𝑑𝑔𝑒

2.25, 𝑓𝑜𝑟 (𝑖2 + 𝑗2) ≤ 2𝑁 in Texture
1.25, 𝑓𝑜𝑟 (𝑖2 + 𝑗2) > 2𝑁 in Texture

. (7) 

Contrarily to the contrast masking factor in [9], the 
term introduced following the Foley-Boynton [16] method 
was not considered in the proposed approach since it 
required the computation of the transform coefficients of 
the original frame, increasing this way the complexity of 
the overall solution. 
 
4. JND-DRIVEN RATE-DISTORTION OPTIMISED 

QUANTISATION 
 
The method to integrate the selected JND model into the 
reference HEVC encoder consists of modifying the 
RDOQ process according to the thresholds defined by the 
JND profile described in the previous section. In this 
section, a brief description of the RDOQ process is first 
given, followed by the description of the proposed 
modifications to turn it into a perceptually adjusted tool. 
 
4.1. Rate-Distortion Optimised Quantisation 
 
The RDOQ process [17] consists of optimising the choice 
of the level obtained after quantising a given transform 
coefficient, considering both the introduced distortion and 
the associated bitrate. When the RDOQ tool is not used, 
the nearest integer rounding rule is used by the reference 
HEVC encoder to round a given quantised coefficient to 
the nearest integer level, 𝐿. Even though this rounding 
process minimises the distortion introduced by 
quantisation, choosing a different quantised level may be 
beneficial when considering also the associated bitrate. 
Therefore, when RDOQ is enabled in the version of the 
reference HEVC software (HM 16.2) used in this paper, 
the levels 𝐿, 𝐿 − 1 and 0 are considered and the mode that 
shows the lowest Rate-Distortion (RD) cost is selected. 
Figure 1 shows an example of the reconstructed values 
corresponding to the levels tested by the RDOQ process. 

 

Figure 1. Candidates tested when using the RDOQ process to 
quantise a given transform coefficient 𝑪𝒊,𝒋. 

0

… x

Ci,jQstep

 𝐻�𝑓𝑖,𝑗� = (1 − 𝑎 +
𝑓𝑖,𝑗
𝑓0

)𝑒−�
𝑓𝑖,𝑗
𝑓0

�
𝑝

, (3) 

 𝑆(𝑁) = 𝑁−2𝜆, (4) 
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The cost of each level tested by the RDOQ process, 𝐽, 
is computed according to 

 𝐽 = 𝐷𝑥 + 𝜆 ∙ 𝑅𝑥, (8) 

where 𝐷𝑥 is the distortion introduced by the selection of a 
given candidate level 𝑥 (i.e, 𝐿, 𝐿 − 1 or 0), 𝜆 is the 
Lagrangean multiplier and 𝑅𝑥 is the bitrate associated 
with each level being tested. In (8), the distortion, 𝐷𝑥, is 
the square of the error introduced by the quantisation 
process, 𝐸𝑥, given by 

 𝐸𝑥 = � 𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗𝑥 �. (9) 

It is important to recall that the HEVC standard only 
specifies the syntax of the encoded bitstream and the 
decoding process. Thus, adjusting the quantised levels to 
minimise the RD cost is a decision made at the encoder 
and therefore any rule for selecting the quantised levels 
can be applied for this purpose without sacrificing 
compliance with the standard. 
 
4.2. JND-Driven RDOQ 
 
The JND profile defines a threshold for each transform 
coefficient that represents the maximum amount of 
distortion that can be added to a given coefficient without 
being perceived by the HVS. It is therefore possible to 
modify the value of 𝐷𝑥 according to this threshold and 
take into consideration the limitations of the HVS when 
computing the cost of each optimised level being tested.  

Assuming that 𝑇𝐽𝑁𝐷(𝑛, 𝑖, 𝑗) denotes the visibility 
threshold of the (𝑖, 𝑗)th coefficient of a given transform 
block 𝑛, the proposed modified distortion, 𝐷′𝑥, to be used 
in cost computation of each candidate level, is computed 
based on a different error, 𝐸𝑥′, given by 

𝐸𝑥′ = �
0, 𝑖𝑓 𝐸𝑥 ≤ 𝑇𝐽𝑁𝐷(𝑛, 𝑖, 𝑗)

𝐸𝑥 − 𝑇𝐽𝑁𝐷(𝑛, 𝑖, 𝑗), 𝑖𝑓 𝐸𝑥 > 𝑇𝐽𝑁𝐷(𝑛, 𝑖, 𝑗). (10) 

In practice, replacing 𝐷𝑥 for 𝐷′𝑥 in the cost 
computation means that any distortion lower than that 
allowed by the JND threshold for the coefficient being 
quantised should be considered null in the RDOQ cost 
computation, since this distortion is not perceptually 
noticeable. In case this distortion is higher than the 
threshold, only the difference between these two values 
should be considered in the cost computation. 
 

5. PERFORMANCE EVALUATION 
 
Experiments were performed to assess the bitrate 
reduction capabilities of the proposed solution. The 
experiments were performed for the first 100 frames of 3 
UHD test sequences and 3 HD test sequences. The 
experiments were conducted under Random Access 
conditions with the HEVC reference software HM 16.2 
for four different QPs.  The results of the proposed 
technique implemented on top of the reference software 
were compared with the reference software. In both cases, 
RDOQ was enabled. The results obtained are shown in 
Table 1. For all the results shown in Table 1, the decoded 
sequences were evaluated and no visual quality 

degradation was observed comparing with the decoded 
output of the HEVC reference software, despite the small 
PSNR losses. 

The proposed JND-driven RDOQ technique is able to 
significantly reduce the bitrate for lower QPs in all 
sequences, especially for the three UHD sequences tested, 
where this reduction can go up to 62%. Higher reductions 
are expected in lower QPs since lower quantisation steps 
increase the number of cases where the quantisation error 
is lower than the JND threshold.  

As expected, a small loss in terms of PSNR is 
introduced when using the proposed JND-driven RDOQ 
solution. Nonetheless, all decoded sequences were 
observed and no visual quality degradations were 
identified. Since the main target of the JND-driven RDOQ 
technique is to perceptually optimise the performance of 
the RDOQ decisions in an HEVC encoder, the PSNR loss 
is not as relevant as the subjective output video quality of 
the decoded sequences. 

For higher quality RD points, the extra complexity 
introduced by the proposed technique is compensated by a 
reduction in the number of non-zero coefficients to 
encode, leading to even lower overall encoding times in 
the case of UHD sequences. For the remaining QPs, the 
overall additional complexity introduced for all sequences 
by the proposed technique is in general low (average 
encoding time penalty of 8%).  

From the results in Table 1, it is clear that the 
proposed JND-driven RDOQ solution shows higher 
bitrate reduction capabilities when the target qualities are 
high. The solution is able to reduce the bitrates by 
reducing the amount of perceptually irrelevant visual 
information in the decoded sequences, providing the same 
output perceptual quality for significantly lower bitrate.  

Table 1. JND-driven RDOQ performance. 

 
 
To further evaluate the performance of the proposed 

solution for higher qualities, an alternative perceptual 
quality metric was also used to evaluate the quality of the 
decoded sequences, in an attempt to have a more 

Sequence QP
Bitrate 
[kb/s]

Y PSNR 
[dB]

Bitrate 
[kb/s]

Y PSNR 
[dB]

22 62823 38.27 26614 37.86 -58% -0.41 -1%
27 8224 37.52 7446 37.47 -9% -0.05 9%
32 3827 36.92 3767 36.89 -2% -0.03 10%
37 2098 36.00 2082 35.98 -1% -0.02 10%
22 85844 37.38 32302 36.82 -62% -0.56 -4%
27 8276 36.52 6277 36.48 -24% -0.04 8%
32 2810 36.06 2743 36.04 -2% -0.02 9%
37 1393 35.41 1380 35.40 -1% -0.01 10%
22 61201 40.38 30206 39.22 -51% -1.16 0%
27 10726 38.74 7086 38.55 -34% -0.20 7%
32 3021 38.05 2821 38.02 -7% -0.04 9%
37 1623 37.29 1615 37.26 0% -0.03 9%
22 17254 39.30 13502 38.93 -22% -0.36 4%
27 6071 37.70 5740 37.57 -5% -0.13 11%
32 2884 35.92 2829 35.84 -2% -0.07 12%
37 1537 33.97 1522 33.94 -1% -0.03 11%
22 39832 37.99 26556 36.94 -33% -1.05 2%
27 10001 35.54 8489 35.32 -15% -0.22 9%
32 3654 33.79 3491 33.69 -4% -0.11 11%
37 1672 31.76 1650 31.71 -1% -0.05 11%
22 20816 38.43 15924 37.96 -24% -0.47 6%
27 6791 36.75 6363 36.57 -6% -0.19 11%
32 3230 34.84 3159 34.74 -2% -0.09 13%
37 1675 32.65 1654 32.60 -1% -0.05 13%

Homeless Sleeping  
3840x2160 @ 60 Hz

Young Dancers 1 
3840x2160 @ 60 Hz

BasketballDrive 
1920x1080 @ 50 Hz

BQTerrace 
1920x1080 @ 60 Hz

Cactus              
1920x1080 @ 50 Hz

HM 16.2-RDOQ JND-RDOQ Bitrate 
saving

PSNR 
diff. 
[dB]

Enc. 
time 
diff.

Show Drummer 
3840x2160 @ 60 Hz
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perceptually oriented evaluation. The selected metric to 
additionally evaluate the quality of the decoded sequences 
was the Video Quality Metric (VQM) [18], which is a 
standardised metric that according to [18] shows a better 
correlation with Mean Opinion Score (MOS) tests than 
PSNR. In contrast to PSNR, the lower the VQM value, the 
higher the quality of the sequence being evaluated. The 
results obtained are shown in Table 2. 

Table 2. JND-driven RDOQ performance analysis for lower 
QPs using VQM. 

 
 

Similarly to the previous results presented in this 
section, negative values in the bitrate saving column 
represent bitrate reductions achieved by the JND-driven 
RDOQ with respect to the HEVC reference software. In 
the VQM difference column, negative values represent an 
increase of output video quality according to the VQM 
metric and negative values in the PSNR difference column 
represent a quality decrease in terms of PSNR. 

From the VQM results in Table 2, it is possible to 
conclude that for these specific target qualities, the 
proposed JND-driven RDOQ technique is able to increase 
the decoded quality of the decoded sequences and, at the 
same time, reduce the bitrate up to 20% for the tested 
UHD sequences. 
 

6. FINAL REMARKS 
 
This paper presented a novel technique for integrating a 
JND model into an HEVC encoder, allowing a 
perceptually-oriented selection of the quantised levels by 
the RDOQ process of an HEVC encoder. The technique 
modifies the decisions made at the encoder side, meaning 
that a fully compliant bitstream is generated with the 
proposed solution. The results obtained show significant 
bitrate reductions with respect to the HEVC reference 
software, for the same perceived output visual quality, 
especially for UHD video content. The required extra 
complexity is very low, making this technique suitable for 
integration into any HEVC encoder. 
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QP
Bitrate 
[kb/s]

VQM QP
Bitrate 
[kb/s]

VQM

Homeless 
Sleeping

26 13743 0.0436 25 10976 0.0417 -20% -0.18 -0.0019

Show 
Drummer

24 28920 0.9841 22 26614 0.9797 -8% -0.02 -0.0044

Young 
Dancers 1

22 61201 1.1772 20 54485 1.1764 -11% -0.72 -0.0007

HM 16.2-RDOQ JND-RDOQ Bitrate 
saving 

[%]

PSNR 
diff. 
[dB]

VQM 
diff.
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