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Abstract—Coprime sampling has been shown to be an effective
deterministic sub-Nyquist sampling scheme for estimating the
power spectrum of wide sense stationary signals without any
loss of information. In contrast to the existing results in coprime
sampling which only assume an ideal setting, this paper considers
both additive perturbation on the sampled signal, as well as
sampling jitter, and analyzes their effect on the quality of the
estimated correlation sequence. A variety of bounds on the error
introduced by such non ideal sampling schemes are computed
by considering a statistical model for the perturbations. They
indicate that coprime sampling leads to stable estimation of
the autocorrelation sequence, in presence of small perturbations.
Additional results on identifiability in spatial spectrum estimation
are derived using the Fisher Information Matrix, which indicate
that with high probability, it is still possible to identify O(M2)
sources with M sensors, with a perturbed coprime array.
Keywords — Coprime Sampling, Spectrum Estimation, Co-Array,
Jitter, Line Spectrum, Fisher Information Matrix. 1

I. INTRODUCTION

Co-prime sampling [1], [2] is a novel sampling technique
that has been proposed to estimate the spectrum of wide-
sense stationary (WSS) processes at sub-Nyquist rates. Unlike
common compressive sensing approaches that use sparsity to
enable sampling at sub-Nyquist rates, co-prime sampling only
requires the random process to be WSS. For a line spectrum,
co-prime sampling (with coprime numbers M ,N ) is shown to
be capable of recovering O(MN) sinusoidal frequencies [1]–
[3]. However, existing results in co-prime sampling largely
ignore any non-ideal settings such as additive noise and/or
jitter (inaccuracy or uncertainty about the sampling instants)
which are of great practical importance in implementing any
sampling strategy .

The effect of jitter has been extensively studied in the
context of uniform sampling [4]–[6]. Jitters usually occur
due to inaccuracies of the system clock of A/D converters
at high frequencies. A desirable sampling technique would
be one that is tolerant to jitters as well as to additive noise
so that small jitters or noise would lead only to relatively
small reconstruction errors. This is also known as stability
of sampling [7]. Jitter in spatial sampling leads to perturba-
tion of sensor locations in an antenna array, which is well
studied for uniform linear arrays (ULA). It is known that
small perturbations in the location of the sensors, can cause
relatively large errors in subspace based algorithms such as
MUSIC [8], [9]. Several algorithms for ULAs try to jointly
estimate the array perturbations and the source directions [10],
[11]. Our recent work [12], addresses a similar situation for
co-arrays. Nevertheless, the existing studies about sampling
jitter and perturbations cannot be applied to the co-prime
sampling, This is because, in co-prime sampling the goal is
to reconstruct the autocorrelation sequence whereas in typical
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sampling problems the goal is to reconstruct the time domain
signal.

This paper studies the effect of non ideal conditions on
coprime sampling and how they affect the subsequent estima-
tion of the autocorrelation sequence. One of the main results
of ideal co-prime sampling was to show that it is possible
to estimate autocorrelation sequence at Nyquist rate using
sub-Nyquist samplers. In the context of spatial sampling, this
means identification of O(M2) sources using M sensors. We
want to investigate if coprime sampling is robust to small
perturbations. In particular, we will explore if we can still
reliably estimate autocorrelation sequence for temporal sam-
pling, and identify O(M2) sources for spatial sampling, using
a noisy version of co-prime samples. For spatial sampling, we
derive a Cramér Rao lower bound and examine identifiability
issues in the presence of array perturbations. In this paper,
jitter in temporal sampling is modeled as a uniform random
variable, whereas the array perturbation are assumed to be
fixed unknown variables which are both natural assumptions
in their corresponding problem settings.

This paper is organized as follows. Section III briefly
reviews the concept of co-prime sampling and examines the
effect of jitter and additive noise. Section IV establishes some
results for the array perturbations in the context of spatial
sampling, and also examines identifiability issues for this case.
Section V validates the results of this paper through numerical
simulations. Section VI concludes the paper.

II. ROBUSTNESS TO ADDITIVE NOISE

Let Rx(τ) denote the autocorrelation function (ACF) of a
wide-sense stationary (WSS) random process x(t). The signal
x(n) is sampled with a pair of coprime samplers at the rate
1/MT and 1/NT (M < N ) to obtain the samples xM [n] =
x(MnT ) and xN [m] = x(NmT ), where 1/T corresponds to
the Nyquist rate determined by the power spectrum density
of x(t). It can be shown [2] that {E[xM [n]xN [m], 0 ≤ n ≤
N−1, 0 ≤ m ≤ 2M−1} generates correlation values Rx(kT )
for all lags 0 ≤ k ≤MN − 1. Hence, it is possible to obtain
samples of the autocorrelation function at the Nyquist rate
(1/T ) by using sub-Nyquist samplers operating at M and N
times slower than the Nyquist rate. In this section, we study
the effect of perturbing the samples obtained from coprime
samplers, on the subsequent computation of correlation lags
Rx(kT ) at the Nyquist rate. Assuming additive perturbation on
the samples, the signals obtained from the coprime samplers
are:

x1[n, l] = x (nMT + 2MNlT ) + z (nMT + 2MNlT )
(1)

x2[m, l] = x (mNT + 2MNlT ) + z (mNT + 2MNlT )
(2)
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For the purpose of our analysis we make the following
assumptions:

1) (A1): x(nT ) is assumed to be a zero mean jointly
Gaussian WSS process whose autocorrelation Rx(kT )
is assumed to be zero for |k| ≥ 2MN . For instance,
a moving-average (MA) process with order less than or
equal to 2MN would satisfy this criterion. In particular,
this implies x(nT ) and x(nT + 2MNlT + k) are
independent for l, k 6= 0 (since these variables are
jointly Gaussian and uncorrelated). Also, for each n,
the random variables {x(nT + k), |k| < 2MN} are
jointly Gaussian with correlation coefficients given by
Rx(kT ), |k| <= 2MN .

2) (A2): The perturbations z(nT ) are assumed to be zero
mean i.i.d process, jointly Gaussian with (and indepen-
dent of) x(nT ). The power of z(nT ) is σ2

z .

We will suppress T in our notations. Assumptions (A1) and
(A2) imply that x1[n, l] and x2[n, l] are jointly Gaussian
for each n, l satisfying E(x1[n, l]x2[m, l]) = Rx(Nm −
Mn) + σ2

zδ(Nm − Mn). In practice however, we estimate
the autocorrelation sequence using L such observations as

R̂x(Nm−Mn) =
1

L

L
∑

l=1

x1[n, l]x2[m, l] (3)

with 0 ≤ m ≤ N − 1, and 0 ≤ n ≤ 2M − 1. Our goal
is to understand how perturation and effect of finite samples
jointly influence the estimation of the correlation values using
coprime samplers. The following theorem explicitly character-
ize such an effect:

Theorem 1. Under assumptions (A1) and (A2) on x(t), for
each k = Nm−Mn, 0 ≤ n ≤ 2M − 1, 0 ≤ m ≤ N − 1, the

perturbed autocorrelation R̂x[k] estimated using L samples,
differs from the actual autocorrelation Rx(k) as

P
(

|R̂x(k)−Rx(k)| > ǫ
)

(4)

≤ 2ǫL/2 exp

{

− ǫL

R(0) + σ2
z + |Rx(k)|

}

, ǫ≫ |ρ| (5)

Proof. Since Rx(k) = 0, |k| ≥ 2MN samples, the ran-

dom variables zmn[l] , x1[n, l]x2[m, l], l = 1, 2, · · ·L are
jointly Gaussian and uncorrelated, and hence independent.
Also, E((x1[n, l])

2) = E((x2[m, l])
2) = Rx(0) + σ2

z , and
E(x1[n, l]x2[m, l]) = Rx(Nm − Mn) + σ2

zδ(Nm − Mn).
Using Chernoff bound on R̂x[Nm −Mn] = 1

L

∑L
l=1 zmn[l]

(See Appendix VII), we can obtain the concentration inequal-
ity (4), in which we replaced a with ǫ/

(

Rx(0) + σ2
z

)

, and ρ
with (Rx(Mn−Nm)+σ2

zδ(Nm−Mn))/
(

Rx(0) + σ2
z

)

.

The result shows that for a given perturbation σ2
z , the

probability of large deviation of R̂x(k) from its mean decays
at least exponentially with L with a decay rate that is explicitly
characterized by the perturbation strength. We will look into
this result in more detail in [13].

III. CO-PRIME SAMPLING FOR LINE SPECTRUM

ESTIMATION

In this section, we consider a specific class of WSS signals
whose spectrum consists of lines, representing frequencies of
sinusoids buried in noise. We briefly review the problem of

estimating these frequencies using the concept of co-prime
sampling [2]. Consider a signal x(t) composed of K complex

sinusoids, i.e., x(t) =
∑K

k=1Ake
j(2πfkt+φk). Assume that the

phases φk are uniformly distributed on [0, 2π]. The signal is
sampled using two A/D converters operating at rates 1

MT and
1

NT , in which 1/T = 2fmax is the Nyquist rate, yielding

x1[n] =

K
∑

k=1

Ake
jwkMn+jφk + zn (6)

x2[m] =

K
∑

k=1

Ake
jwkMm+jφk + zm, (7)

where wk = 2πfkT . Now, let us construct the vectors
y1[l] = [x1[2Nl] x1[2Nl + 1] . . . x1[2Nl + N − 1]]T ,
y2[l] = [x2[2Ml+ 1] x2[2Ml+ 2] . . . x2[2Ml+ 2M − 1]]T ,
and y[l] = [y1[l]

T y2[l]
T ]T . Following [2], the autocorrelation

matrix of y can be derived as

Ry = E
(

yyH
)

=

K
∑

k=1

A2
kB(wk) + σ2I (8)

where B(wk) = a(wk)a(wk)
H , a(wk) =

[aM (wk)
T aN (wk)

T ]T with aM (wk) =
[1 ejwkM e2jwkM . . . ejwkM(N−1)], aN (wk) =
[ejwkN e2jwkN . . . ejwkN(2M−1)]. One can write the
(8) in the vectorized form to get

vec(Ry) =

K
∑

k=1

b(wk)A
2
k + σ2 vec(I), (9)

where b(wk) = a∗(wk)⊗a(wk), and ⊗ denotes the Kronecker
product. The elements of b(wk) have the form ejwkp, where p
takes all the integer values between 0 and MN . This gives rise
to possibility of detecting O(MN) sinusoids by modifying the
MUSIC algorithm [2].

A. Robustness to the Perturbation in Sampling Instants

Assume that due to imperfections of the A/D converters,
the samples are picked with a random jitter. The perturbed
samples can then be written as

x̃1[n] =

K
∑

k=1

Ake
jwk(Mn+δ1[n])+jφk + zn (10)

x̃2[m] =

K
∑

k=1

Ake
jwk(Nm+δ2[m])+jφk + zm, (11)

where δ1[n], δ2[m] are i.i.d random variables distributed uni-
formly in [−ρ

2 ,
ρ
2 ]. In this case, we can write ỹ[k] as

ỹ[l] =
K
∑

k=1

ãk[l]e
j2MNl+φk . (12)

Here, ãk[l] = a(wk) ◦ pk[l], where ◦ de-
notes the element-wise product, and pk[l] =
[ejwkδ1[2Nl] ejwkδ1[2Nl+1] . . . ejwkδ1[2Nl+N−1] ejwkδ2[2Ml]

ejwkδ2[2Ml+1] . . . ejwkδ2[2Ml+2M−1]]T is a vector consisting
of the samples of δ1[n] and δ2[m] constructed the same way
y is composed of the elements of x1[n] and x2[m]. The
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perturbed autocorrelation matrix is given by the following
theorem.

Theorem 2. In the presence of random jitter in the sampling,
the perturbed autocorrelation matrix is given by

R̃y =

K
∑

k=1

A2
kB(wk) ◦Ek + σ2I (13)

where Ek is a matrix with ones on the diagonal and
sinc2(wkρ/2) elsewhere.

Proof. The perturbed autocorrelation matrix is obtained by

R̃y = E
(

ỹ[l]ỹH [l]
)

= Eδ

(

K
∑

k=1

A2
kB̃k[l] + σ2I

)

,

where B̃k[l] = ãk[l]ã
H
k [l] and B̃k[l] can be written as B̃k[l] =

B(wk)◦Pk[l] with Pk[l] = pk[l]p
H
k [l]. The diagonal elements

of the matrix Pk[l] are all 1 and the off diagonal elements are

of the form ejwkβrs[l], 1 ≤ r, s ≤ N+2M−1, r 6= s, in which
βrs[l] is the difference of two independent random variables
with uniform distribution in [−ρ

2
ρ
2 ]. As a result, the pdf of

βrs[l] will be a triangular function spanning from −ρ to ρ:

fβrs[l](β) =















1

ρ2
(ρ+ β) β < 0

1

ρ2
(ρ− β) β ≥ 0

Hence, with integration we obtain Eδ(e
jwkβrs[l]) =

(

sin(wkρ/2)
wkρ/2

)2

, sinc2(wkρ/2). This leads to (13) in which

Ek is a matrix with ones on the diagonal and sinc2(wkρ/2)
elsewhere.

Corollary 1. Let ρwk ≪ 1 for all k. The deviation of

perturbed autocorrelation matrix R̃y from the ideal autocor-
relation matrix Ry is given by

‖Ry − R̃y‖F ≤ (N + 2M − 1)
ρ2

12

√

√

√

√K

K
∑

k=1

A4
kw

4
k (14)

Proof. Using (13), we obtain Ry − R̃y =
∑K

k=1A
2
kB(wk) ◦

(1−Ek) in which 1 ∈ C
(N+2M−1)×(N+2M−1) is an all-ones

matrix. Each off-diagonal element of Ry − R̃y can be upper-
bounded by

∣

∣

∣

∣

(

Ry − R̃y

)

r,s

∣

∣

∣

∣

2

≤ K

K
∑

k=1

A4
k

(

1− sinc2(
ρwk

2
)
)2

, (15)

and the diagonal entries of Ry − R̃y are obviously equal to
zero. Hence, we immediately get

‖Ry − R̃y‖F ≤ (N + 2M − 1)

√

√

√

√K

K
∑

k=1

A4
k

(

1− sinc2(
ρwk

2
)
)2

Using the assumption ρwk ≪ 1 for all k, we can approximate

1− sinc2(ρwk

2 ) as
ρ2w2

k

12 to obtain (14).

IV. IDENTIFIABILITY IN PRESENCE OF SPATIAL

PERTURBATION: A CRAMER RAO BOUND BASED STUDY

We now turn to studying the effect of perturbation in spatial
coprime sampling, in the context of direction-of-arrival (DOA)
estimation. We consider a grid-based model for the DOA
estimation problem and examine the effect of perturbation in
the location of the sensors to the estimated DOAs. Consider
an array of M sensors receiving signals from K uncorrelated
narrowband sources. In the grid-based model, the range of all
possible source directions is quantized into Nθ grid points.
Denoting δm to be perturbation corresponding to the mthe
sensor, the received signal model can then be written as

y[l] = Agridx[l] +w[l] (16)

in which y[l],w[l] ∈ C
M×1, x[l] ∈ C

Nθ×1, Agrid =
[a(θ1) a(θ2) . . . a(θNθ

)], θi’s are the grid points, and
a(θ) ∈ C

M×1 is the steering vector for the direction θ, whose

mth element is given by ejπ(dm+δm) sin(θ) with dm denoting
the location of the mth sensor of the array. The correlation
matrix of the received signals can be written as

Ry = AgridRxA
H
grid + σ2

wI. (17)

We can also write the vectorized form of (18) to obtain

vec(Ry) = Acaγ + σ2
w vec(I). (18)

where Aca = A∗
grid ⊙ Agrid is the co-array manifold with

⊙ denoting column-wise Khatri-Rao matrix product, and γ is
the diagonal of Rx. For certain structure of arrays such as
nested and coprime arrays, it is shown that we can resolve
up to O(M2) sources using only M sensors. In the following
sections, we examine the effect of array perturbations (uncer-
tainty about the sensor locations) on the DOA estimation, by
studying the Cramér Rao bound for the perturbed model.

A. Cramér Rao Bound

Let us denote W = Ry
−T ⊗ Ry

−1, Hδ =

[vec(Rδ2) vec(Rδ3) . . . vec(RδM )] with Rδi ,
∂Ry

∂δi
=

ARxD
H
δi

+ Dδi
RxA

H , and Dδi
= ∂A

∂δi
. Also, let Π⊥

X =

I−XX† denote the projection onto null-space of a matrix X,
and (.)† represent the Moore-Penrose pseudo-inverse. Then,
the following theorem provides a closed form for the Cramér
Rao bound for the perturbed model (16).

Theorem 3. Defining ψ = [γT δT ]T as the parameters to be
estimated, the Cramer Rao lower bound is given by

1

L
(CRBγγ)

−1
= AH

caW
1/2Π⊥

W1/2Hδ
W1/2Aca (19)

Proof. For Gaussian distributed random variables with covari-
ance matrix Ry, the Fisher Information Matrix (FIM) can be
derived as

Jij = vec(
∂Ry

∂ψi
)H(Ry

−T ⊗Ry
−1) vec(

∂Ry

∂ψj
) (20)

The Fisher information Matrix (FIM) is

J =

(

Jγγ Jγδ

JH
γδ Jδδ

)

(21)

Similar to [14], we get

Jγγ = AH
caWAca, Jγδ = AH

caWHδ, Jδδ = HH
δ WHδ
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Computing the Schur-complement of the FIM, the block
of CRB matrix corresponding to the source powers can be
derived as

1

L
(CRBγγ)

−1
= Jγγ − JγδJ

−1
δδ J

H
γδ (22)

= AH
caWAca −AH

caWHδ

(

HH
δ WHδ

)−1
HH

δ WAca

(23)

= AH
caW

1/2Π⊥
W1/2Hδ

W1/2Aca (24)

Corollary 2. If Nθ > rank(Aca), (CRBγγ)
−1

is singular.

Proof. A sufficient condition for the matrix (CRBγγ)
−1

to be
singular is that Aca be rank deficient. This is true if Nθ >
rank(Aca).

The singularity of the CRB matrix implies the non identi-
fiability of parameters [15]. Denoting Mca as the number of
distinct elements in the co-array of the given sensor array, it
is easy to see that Aca is full rank if Nθ ≤ Mca. However,
in presence of perturbation, this may not still hold. Since the
rank of Aca plays crucial role in deciding the identifiability
of γ, we next investigate how perturbation affects the rank of
Aca and if it is still possible to argue that it is full rank with
high probability.

B. The probability of rank deficiency in the presence pertur-
bations

In this section, we calculate the probability of the event
under which the perturbed coarray rank(Aca) has rank at least
Mca. Assuming that all the non-zero singular values of Āca

are simple, we can linearly approximate the kth singular value
of Aca as

σ̂m = σ̄k +

M
∑

i=1

ūH
k Dδi

v̄kδi (25)

in which ūk and v̄k denote the kth left and right singular
vector of the unperturbed co-array Āca, respectively, and
Dδi

= ∂Aca

∂δi

∣

∣

δ=0
. Using this approximation, the probability of

the event that Aca does not lose rank under the perturbations
can be lower bounded using a union bound as follows:

P (rank(Aca) ≥Mca) ≥ P

(

Mca
⋂

m=1

σ̂m > 0

)

≥ 1− P

(

Mca
⋃

m=1

σ̂m ≤ 0

)

≥ 1−
Mca
∑

m=1

P (σ̂m ≤ 0) (26)

Moreover, since the perturbation are assumed to be bounded
on [−ρ

2 ,
ρ
2 ], using a Hoeffding bound we get

P (σ̂m ≤ 0) = P

(

Mca
∑

i=1

ūH
mDδi

v̄mδi ≤ −σ̄m
)

≤ e
−

2σ̄2
m

ρ2
∑M

i=1(ūH
mDδi

v̄m)
2

(27)

Plugging (27) into (26) gives the probability under which the
perturbed co-array manifold loses rank under perturbations.
We observe that as long as the perturbations are small, the
perturbed co-array matrix Aca will have rank at least Mca

with high probability.
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Fig. 1. ǫ designates the deviation ‖Ry − R̃y‖F /‖Ry‖F for the autocor-
relation. ǫ̂ is the same quantity for the sample autocorrelation matrices.

V. SIMULATIONS

We perform simulations to confirm some of the theoretical
claims developed in this paper. Figure 1a shows the deviation

of the autocorrelation matrix (‖Ry − R̃y‖F /‖Ry‖F ) due to
perturbations in sampling instants calculated using equation
(13). The same quantity is plotted for the sample autocorre-
lation matrix for L = 500 samples, M = 3, N = 7, and
10 sinusoids with frequencies uniformly distributed between
10Hz and 200Hz, T = 5 × 10−4. We observed that the
empirical values match with what we obtained in equation
(13). Each plot in Figure 1b illustrate this deviation versus the
number of samples L, for fixed values of ρ. As we increase
L, the empirical values get close to the expected covariance
matrices.

Figure 2a shows the averaged Cramér Rao bound (CRB)
for a co-prime array with respect to ρ, which is the range of
perturbations. Also, M = 3, N = 7, Nθ = 50, and L = 1000.
By averaged CRB we mean the inverse of averaged Fisher
Information Matrix over several realizations of uniformly
distributed random perturbations. The number of sources fixed
to be K = 10. The sources are uniformly distributed on the
grid with unit powers, i.e., the ⌊kNθ

K ⌋ element of γ is one, and
the rest are zero (k = 1 . . .K). The Root Mean Square Error
(RMSE) of the estimated source powers using our algorithm
[12] is also compared with the CRB. Figure 2b shows the same
plot for a ULA array of 12 sensors with the same setting except
for Nθ = 20, and K = 3.

Figure 3a shows the probability of Aca having rank at
least K (using equation (26)) for various K values, different
array structures and different ρ’s. Also, 3b demonstrates the
probability of Aca having rank at least Mca with respect to
different ρ’s. As it can be seen, for small perturbations, the
perturbed co-array is guaranteed to preserve the rank of Mca.
Note that this plot is a lower bound for the actual probability.

VI. CONCLUSION

The effects of additive perturbation and jitter in coprime
sampling are studied. It is shown that such non idealness in
sampling leads to errors in the estimated correlation which can
be bounded under certain mild assumptions on the spectrum
of the underlying WSS process. The robustness of coprime
sampling is thereby established for a generic class of WSS
signals, as well as for line spectrum processes, under small
values of the perturbation. The issue of identifiability in spatial
spectrum sensing is also addressed and it is shown that a

23rd European Signal Processing Conference (EUSIPCO)

2878



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−25

−20

−15

−10

−5

ρ

CRB

RMSE

(a) Coprime array

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

ρ

CRB

RMSE

(b) ULA

Fig. 2. The CRB, and the RMSE of the recovered source powers. The source
powers are recovered using our algorithm [12]
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Fig. 3. The lowerbound for the probability of Aca having rank at least K
(Fig. 3a), and Mca (Fig. 3b), for different values of ρ.

perturbed coprime sensor array (with unknown perturbations)
can still identify O(M2) sources with high probability. Future
research in this direction will aim at tightening some of the
bounds derived in this paper and proposing robust algorithms
for perturbed coprime sampling.

VII. APPENDIX

Following [16], the moment generating function of product
of two zero mean correlated Gaussian variables with unit
variance is given by

My(t) =
1

√

(1− ρ+t)(1 + ρ−t)
(28)

in which Y = X1X2, and X1, X2 are the Gaussian variables,
ρ+ = 1+ρ, and ρ− = 1−ρ where ρ = E(X1X2). Assuming
that we have L independent such Y variables, we can derive
a Chernoff bound

P (| 1
L

L
∑

l=1

Yl − ρ| > a) ≤ ζL+ + ζL− (29)

where ζ+ = inft>0

{

e−(a+ρ)tMy(t)
}

, ζ− =
inft<0

{

e−(ρ−a)tMy(t)
}

. For brevity, we only consider
the case where a > |ρ|, which is of more interest since we
want to derive a tail bound. We will consider other cases in
our future work [13]. Taking the derivatives with respect to
t, equating with zero, and performing the required operations
we obtain

ζi =

√
2|ci|

√

−ρ′ +
√

d2i + 4ρ′cia
e
−

√
d2
i
+4ρ′cia−di

2ρ′ (30)

in which i can be either + or −, and c+ = ρ + a, c− =
a − ρ, d+ = 1 + ρ2 + 2aρ, d− = 1 + ρ2 − 2aρ, ρ′ = 1 − ρ2.
Considering the asymptotic behavior of ζi for a≫ ρ, we get

P (| 1
L

L
∑

l=1

Yl − ρ| > a) ≤ a
L
2

(

e−
aL
1+ρ + e−

aL
1−ρ

)

≤ 2a
L
2 e−

aL
1+|ρ| (31)
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