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ABSTRACT

The task of blind source separation (BSS) is to decompose
sources that are observed only via their linear combination
with unknown weights. The separation is possible when addi-
tional assumptions on the initial sources are given. Different
assumptions yield different separation algorithms. Since we
are primarily concerned with noisy observations, we follow
the Variational Bayes approach and define noise properties
and assumptions on the sources by prior probability distribu-
tions. Due to properties of the Variational Bayes algorithm,
the resulting inference algorithm is very similar for many dif-
ferent source assumptions. This allows us to build a mod-
ular toolbox, where it is easy to code different assumptions
as different modules. By using different modules, we obtain
different BSS algorithms. The potential of this open-source
toolbox is demonstrated on separation of hyperspectral image
data. The MATLAB implementation of the toolbox is avail-
able for download.

Index Terms—Blind Source Separation, Variational
Bayes Method, Sparse Prior, Hyperspectral Image

1. INTRODUCTION

The task of blind source separation (BSS) is to recover orig-
inal signal sources that are observed only via their super-
position with unknown weights. Typical examples of this
task with audio data is the famous cocktail party problem [7]
where many speaker are recorded by many microphones. This
task is also common in image decomposition, where the same
source images are observed via their weighted sum with dy-
namically changing weights [11]. The sources, may also have
the role of low rank representation of high dimensional sig-
nal. This is useful e.g. in hyperspectral imaging [1, 2] where
the same region is acquired by a sensor with a large number
of spectral bands. The analysis of hyperspectral image data
aims at identifying a small number of materials depending on
the spectra. Noise level of different spectral images can vary
significantly.
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Many BSS algorithms were proposed in the signal pro-
cessing literature, with various assumptions on the noise,
source signal, mixing weights or the preselected number of
sources. However, application of the general purpose algo-
rithm on a particular task may not be straightforward. For
example, the independent component analysis (ICA) is not
suitable for hyperspectral imaging since its assumptions are
not valid [8] here. Another issue of hyperspectral images is
the variable quality of the spectral bands, which is not equal
as assumed by many methods [1]. A potential solution is to
assume sparsity of each source image and source spectrum.

In this paper, we propose a variational blind source sepa-
ration algorithm with sparse priors on both source images and
weighting coefficients of the spectral bands. Since these as-
sumptions are common in blind source separation algorithms,
we do not design a single method, but develop only a new
module into a universal Variational BSS toolbox. This is
possible due to the Variational Bayes (VB) methodology [9]
which provides estimates of the model parameters in the form
of marginal posterior probability densities. A unified algo-
rithm can be derived for different representations of the im-
age sources, image weights, and noise properties. These can
be written as different modules that interact via variational
message passing [14]. The number of potential combinations
of different assumptions yields a wide range of BSS algo-
rithms with different properties. In this paper, we focus on
comparison of assumptions of isotropic priors [9] and sparse
priors (via automatic relevance determination (ARD) princi-
ple) [3]. Each of these priors is a different module, which
can be switched on or off for the image sources or the im-
age weights. The Matlab implementation of the toolbox with
these (and many other modules) is available for download.

The flexibility of the toolbox is demonstrated on data from
hyperspectral imaging for hyperspectral unmixing [2]. The
results of the Variational BSS toolbox with different choices
of the prior is compared with the state of the art BSS algo-
rithms such as the non-negative matrix factorization (NMF)
[6] or non-negative projection algorithm (SNPA) [5].
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2. GENERAL MODEL FOR BLIND SOURCE
SEPARATION

In the image separation task, the observation data are con-
sidered to be vectors, d; € RP*!, j = 1,...n, where n is
the number of images and p is the number of pixels. The
images are stored columnwise. The observation vector is as-
sumed to be a result of superposition of  columnwise images,
ay € RP*1 k =1,...,r, weighted by their specific weights
in each recorded image, x; j,

Clj = Zakxj_,k + €;, (1)
k=1

where recorded image d; is corrupted by noise term e; of the
same size. Typically, the number of sources r is much lower
than the number of images, n, or pixels, p.

The task of subsequent analysis is to estimate source im-
ages aj and their weights xi, & = 1,...,r, from the data
D =dy,...,d,]. Since the problem (1) has infinitely many
solutions, we make restrictive assumptions on model param-
eters using prior distributions.

2.1. Noise Prior

Here, we assume that all noise elements, e; ;, i = 1,...,p,
7 = 1,...,n, are independent, identically distributed with
unknown common variance w ™! as follows

fleijlw) = Ne

where A/(.,.) denotes normal distribution. This model is
known as the isotropic Gaussian noise model [13]. The
model is accompanied with the prior model of the precision
parameter w as

(0,07Y), @)

i J

f(w) = Gu(Yo, po), (3)

where G(.,.) denotes gamma distribution with selected prior
parameters g, po. The prior model of w is graphically
demonstrated in Figure 1, right.

2.2. Source Weights Priors
2.2.1. Isotropic Prior with Positivity

Here, we assume the prior model for each source weights vec-
torxg, k=1,...,7r,as[7,9]:

f(xk|vr) =tNs, (01,0} 1, [0, 00)), )

where 0,, ; denotes zero vector of the given size and I,, de-
notes identity matrix of the given size. The parameter vy,
models precision of the kth source. It is common for all
observed data d;, hence we call this prior isotropic. The
prior for the parameter vy is chosen as conjugate to (4) as
f(ug) = Gy, (o, Bo) where while ay, By are known prior
parameters.
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Fig. 1. Graphical model of blind source separation for a spe-
cific choice of priors: isotropic Gaussian noise and sparse pri-
ors for source images and spectral weights.

Positivity of the weights is enforced by truncated support
of the prior. The effect of the truncation has impact on the mo-
ments of the distribution, see Appendix B. Without truncation
to positive support, this kind of prior encourages orthogonal
solution and leads to results similar to the principal compo-
nent analysis [9].

2.2.2. Sparse Prior

An undesired effect of the positivity restriction on the isotropic
prior is that the expected value of the posterior can not ap-
proach zero. This causes an undesired artifacts when the true
weights are sparse. Better prior for sparse signals is based
on the automatic relevance determination (ARD) principle
[4, 12]. Specifically, prior on the source weight, x; 5, is

F(@jlvj ) =tNG, , (0,057, [0, 00)), (5)
f(Wjx) =G, . (a0, Bo), (6)

where v; 5, is unknown precision parameter to be estimated
together with weight x; 5, while g, By are selected prior pa-
rameters. In effect, the prior allows for sparse solution, since
variance of the zero terms also approaches zero. This prior
model is graphically demonstrated in Figure 1, middle.

2.2.3. Other priors

When the weights have mutual correlations, it is possible to
design more complex priors [11] with the same modular prop-
erties. However, this module will not be used for the hyper-
spectral data.

2.3. Source Images Priors

Equivalent priors can be designed for the image sources.
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2.3.1. Isotropic Prior with positivity

Here, we assume the prior for each source image ai, k =
1,...,r,as

f(ak|§k) :tNak( p,lagk Py [0 1]) (7)

The parameter &, is unknown prior precision of the kth source
image in the model. The precision is common for all pixels
in the image. The prior for unknown precision is f(£x) =
Ge, (¢0, ¥o). The truncation of this prior is between zero and
one. This helps to reduce the scaling ambiguity of the multi-
plicative decomposition [9].

2.3.2. Sparse Prior

The source images can contain empty areas, where pixels
should be equal to zero. This can be again achieved by the
ARD prior. In the case of source images it is:

JACTIISHY :tNai,k(()? g;kl7 [0, 1]), (3)
F(&i k) =Gei i (D0, %0), ©

with selected prior parameters ¢g,o. The prior model of
images is graphically demonstrated in Figure 1, left.

3. VARIATIONAL BAYES METHOD FOR BSS

Bayesian estimation of all unknown parameters of the BSS
models from previous Section require evaluation of joint pos-
terior densities. However, this is analytically intractable and
an approximate evaluation is required in practice. We use the
Variational Bayes (VB) approach [7, 9] which seeks the best
posterior in the form of conditionally independent factors. For

the elementary BSS model, where matrices A = [ay, ..., ag]
and X = [x1,...,Xg], it would be:
f(A, X, w|D) ~ f(AID)f(X|D)f(w|D).  (10)

The best approximation of this form in the sense of Kullback-
Leibler divergence can be found analytically, and the result
is known as the Variational Bayes [9] (or ensemble learning
[7]). Following this methodology, the posterior distributions
are

f(A|D)O<eXP (Ef(X\D)f(w|D) [In (f(A, X, w, D))])»
FXID)xcexp (Bja ) oy I (F(A, X0, D)), (11)
f(W|D)O<eXP< f(A|D)f(X|D)[ n (f(4, X,w D))])7

where symbol o< means up to normalizing constant, E¢(.)
means expected value of an argument with respect to distribu-
tion f. When the prior has hyper parameters (e.g. vy, in (4)) it
becomes an additional factor f(vg|D) in the conditional inde-
pendence assumption (10) with analogical posterior to those
in(11).

Algorithm 1 Variational BSS algorithm for general BSS
model (1).
1. Initialization:

(a) Set all prior parameters (subscripted by 0) to 10719

/\

(b) Set initial values for a al, a a;, for all 4, and initial val-
ues of hyper-parameters on A.

(c) Set initial values of i;, X X, for all j, and initial val-
ues of hyper-parameters on X.
(d) Set the initial number of sources 7, -

2. TIterate until convergence is reached using computation of
shaping parameters (Appendix A) of:

(a) Source images, f(A|D), ie. pa,,Ys, and their
hyper-parameters forall: = 1,...,p.

(b) Source weights, f(X|D), ie px;,Yx, and their
hyper-parameters forall j = 1,...,n

(c) Noise parameters, f(w|D), i.e. ¥, p.

3. Report estimates of source images and their weights.

The posterior distributions obtained using the VB method
for the considered priors are:

~(wID>:Qw<z9 p), (12)
f(X|D) Hf %,|D) :H Nx, (1%, Ox;, [0, 00]), (13)
1 j=1
B JP p
f(A|D) :H (a7‘D):H Nai (p’ﬁmzﬁw [07 1])’ (14)
=1 1=1

where shaping parameters 9, p, yix;, X%, , fa,, 2a, and mo-
ments required to evaluate them are defined in Appendix A.
Here, the bar symbol over a lower case letter denotes row vec-
tor of the matrix denoted by capital letter. The form of these
posterior is common for all prior models in Section 2.

Specific variants of this algorithm arise for different prior
models by addition of different hyper-parameters, e.g. & for
isotropic model, and &; ;. for the sparse model of images A.
Note from Fig. 1, that these hyper-parameters influence only
the posterior f(A, D). Thus different modules for computa-
tion of f (A, D) can be written with universal interface, fol-
lowing general algorithm given in Algorithm 1.

For example, module for the sparse prior on A, adds
posterior f(& x| D) = Ge. . (Di k> i k), with moments given
in Appendix A. However, these are considered to be inter-
nal variables of the module evaluating posterior distribution
f(A|D). Replacement of the posterior by another module is
thus almost trivial.

3.1. The Variational BSS Toolbox

The Variational BSS toolbox implements the basic Algorithm
1 for several modules. Both the isotropic and sparse priors are
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Fig. 2. Comparison of three most significant source image es-
timates from hyperspectral image data obtained by the com-
pared methods. Each row contains images from one method.
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Fig. 3. Comparison of three most significant sources weights
estimates from hyperspectral image data obtained by the com-
pared methods.

supported, plus additional modules for more complex priors
[10]. It is implemented in MATLAB and can be downloaded
from http://www.utia.cz/AS/softwaretools/
image_sequences. No additional toolboxes are required.
The algorithm allows to choose:

e prior model of source images with positivity switched on
or off,

e prior model of source weights including deconvolu-
tion models [11], with positivity on different quantities
switched on or off,

e the maximum number of sources 7,,,, , Or heuristic for
estimation of the number of relevant sources [11].

The toolbox is under open-source license and extensions of
the toolbox are very welcome.

4. APPLICATION TO HYPERSPECTRAL IMAGE
DATA

We demonstrate the flexibility of the proposed Variational
BSS toolbox on hyperspectral image data. We will analyze
the URBAN dataset! from hyper-spectral digital imagery col-
lection experiment (HYDICE) where the number of spectral
bands is n = 210 and the size of images is 307 x 307 pixels,
p = 3072, Note that this dataset is highly corrupted by noise,
some of the bands do not contain any signal. We will apply
5 algorithms on this data: (i) isotropic priors of both, images
and weights, i.e. Sections 2.2.1 and 2.3.1, (ii) sparse model of
images while the model of weights remain isotropic, i.e. Sec-
tions 2.2.1 and 2.3.2, (iii) sparse model of both, images and
weights, Sections 2.2.2 and 2.3.2. These algorithms will be
compared with state of the arts algorithms: (iv) non-negative
matrix factorization (NMF) [6] and (v) successive nonnega-
tive projection algorithm (SNPA) [5]; however, since SNPA
can not cope with noisy data, the noisy bands were removed
manually to obtain comparable results.

All algorithms run with preselected number of sources to
6. The results are given in Figure 2 using 3 meaningful source
images from each algorithm in each row while the other 3
source images are observation of noise presented in the origi-
nal dataset. The resulting images are accompanied with spec-
tra for each source and each algorithm given in Figure 3.

We conjecture that the best results are provided by our
proposed algorithm with sparse priors on both, images and
spectral weights. In estimated images, we reach better con-
trast in comparison with other methods. In estimated spec-
tra, we achieve suppression of contribution from completely
noisy bands 104-109 an 139-151, due to sparsity priors on
the source weights.

Thttp://www.agc.army.mil/
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5. DISCUSSION AND CONCLUSION

The variational Bayes (VB) approach to the blind source sep-
aration problem is studied in this paper. Since the problem
is in general ill-posed, additional assumptions are required to
obtain a solution. Here, these are formalized using probability
distributions. We note that for many priors, the VB algorithm
can be generalized to a common message passing algorithm.
This algorithm has been implemented for several priors and
is available in the form of Matlab toolbox. The number of
combinations of possible assumptions in the toolbox is high,
yielding algorithms that have not been tested yet.

Flexibility of the toolbox was demonstrated on hyperspec-
tral image data from hyper-spectral digital imagery collection
experiment (HYDICE). This data is corrupted by severe noise
in many spectral bands. We show that these artifacts can be
automatically suppressed by using sparsity prior on the source
weights. This can be achieved using the sparsity module for
weights of the toolbox. The results of the proposed method
improve over the results of other state-of-the-art approaches.

The MATLAB toolbox is freely available for downloads
under open-source license.
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A. POSTERIOR ESTIMATES

The shaping parameters of posterior distributions (12)—(14)

are derived as ¥ = Yo+, p = po—l—%tr (DDT — EXTDT>+
Ttr (—D)?ET)Jr%tr (A/T\AX/T\X), Sal =Y &%)+

diag(é\i)’ Ha, = Eéiwzyz1(i .7 ) (rbz ¢O + ]-r 1,
i = o+ pdiag(al &), B =037 1(a a;) + diag(0y),
Hx; Zij@Zle(ﬁidiﬁj), o = o + §1r71» B =

Bo + %diag(ifij) with associate moments of standard dis-

~

= “T— _ T
8 = la,;, 8; &; = [z Ha, + 2a,,

—

tributions forms as W =

RIS

o -1 = _ T— _ T

ik PikVip» Xj = Bz XXy = fig fix; + Y,
—_ 1

Uk = QGkPj -

B. TRUNCATED NORMAL DISTRIBUTION

Truncated normal distribution ¢\ () of a scalar = on interval

a:b)is = ~ tN (.0, [0,8]) = 2R (@),

l\’/%, function x[, 5 () is defined

where o = %, B =
as X[qp () = 1if x € [a,b] and x[q)(z) = O otherwise.

erf() is the error function defined as erf(¢) = % f(f e~ du.
a?)]

V2[exp( —exp(—
— Ve <erf P

erf(a))
f[bexp( %) —aexp(=a®)]
f v (erf(B)—erf(a)) .

The moments are T = and

72 =0+ pz —
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