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ABSTRACT

In this paper, we propose a novel online speech dereverberation with
multichannel microphone input signals for noisy environments. Un-
like conventional dereverberation methods which optimizes the dere-
verberation filter by noisy microphone input signals, the proposed
method optimizes the dereverberation filter by noiseless microphone
input signals so as to achieve a good dereverberation filter under
noisy environments. Noiseless microphone input signals are esti-
mated by multichannel Wiener filtering which can be interpreted as
combination of multichannel beamforming and time-varying single-
channel Wiener filtering. In multichannel Wiener filtering, residual
reverberation which cannot be reduced by the time-invariant dere-
verberation filter is also reduced. Optimization of the parameters are
updated by using the expectation-maximization algorithm in an on-
line manner. Experimental results show that the proposed method
can reduce reverberation and background noise effectively in an on-
line manner even when microphone input signals are observed under
noisy enviornments.

Index Terms— Dereverberation, noise robustness, local Gaus-
sian modeling, multichannel Wiener filtering, EM algorithm

1. INTRODUCTION

Speech signal captured in real environments is contaminated with
background noise and reverberation. In the teleconferencing sys-
tems, noise reduction and speech dereverberation techniques are
highly required for smooth conversation. Automatic speech recog-
nition systems also require noiseless and dereverbarated signals so
as to achieve good recognition performance. In this context, speech
dereverberation techniques with auto-regressive models based on
multiple-input/output inverse-filtering (MINT) theorem [1] have
been actively studied [1][2][3][4]. The speech dereverberation tech-
niques with auto-regressive models can reduce reverberation under
noiseless environments. However, when microphone input signals
are contaminated by background noise, dereverberation performance
degrades, because the dereverberation filters are poorly optimized
under noisy environments.

In the previous work by authors [5], we propose a noise ro-
bust speech dereverberation technique, which is an extension of the
speech dereverberation technique with auto-regressive models [4].
In the conventional methods, noisy microphone input signals are uti-
lized so as to update the dereverberation filters, which causes poorly
optimization of the dereverberation filters. On contrary, our pro-
posed technique optimizes the dereverberation filters from noise-
less microphone input signals which is estimated by using Kalman
smoother [6]. The proposed method can reduce reverberation and
background noise more effectively than the conventional methods.

However, this method is an offline method which optimizes all pa-
rameters after that all of the microphone input signals are obtained.

In this paper, we propose a novel online speech dereverberation
technique which is robust against background noise signal. Yosh-
ioka et al. [7] proposed an online speech dereverberation technique
with single microphone input signal, which is based on an auto-
regressive model of noisy microphone input signals. On contrary to
the Yoshioka’s method, the proposed method utilizes multichannel
microphone input signal, and the dereverberation filter is optimized
with an auto-regressive model of noiseless microphone input signals.
To estimate the noiseless microphone input signals, the proposed
method performs multichannel Wiener filtering like the previously
proposed offline Kalman smoother based dereverberation technique.
Multichannel Wiener filtering can be interpretted as combination of
a single-channel noise reduction and a multichannel spatial beam-
former. In the multichannel Wiener filtering, non-stationary charac-
teristics of speech sources and stationary characteristics of stationary
background noise signals are utilized by using the local Gaussian
model [8] so as to extract speech sources effectively. In addition
to noise reduction, residual reverberation is also reduced by multi-
channel Wiener filtering. The time-varying covariance matrix which
reflects uncertainty of the dereverberation filter is considered in the
local Gaussian model. Experimental results under noisy environ-
ments show that the proposed method can reduce background noise
and reverberation effectively.

2. PROBLEM STATEMENT

2.1. Input signal model

The proposed method performs speech dereverberation and noise re-
duction in the time-frequency domain. The microphone input sig-
nal, xl,k (l is frame index, k is frequency index), is modeled as
xl,k = [ xl,k,1 . . . xl,k,Nm ]T , where Nm is the number of the
microphones and T is the transpose operator of a matrix/vector. Un-
der the assumption that there are one speech source and background
noise signal, the microphone input signal is modeled as follows:

xl,k =

Limp−1X
t=0

hk,tsl−t,k +wl,k, (1)

where Limp is the length of the impulse response, hk,t is a vector
which is composed of multichannel impulse responses which is de-
fined as

hk,t = [ hk,1,t . . . hk,Nm,t ]T , (2)

hk,m,t is the tth tap of the impulse response between the speech
source and the mth microphone, sl,k is the original signal, andwl,k

is the multichannel noise signal.
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The proposed method performs dereverberation and noise re-
duction for each frequency independently. Therefore, the frequency
index k is omitted from this. When there is no background noise,
Eq. 1 can be expressed as follows:

cl =

Limp−1X
t=0

htsl−t, (3)

where cl is multichannel noiseless microphone input signal. Eq. 3
can be converted into the following auto-regressive model [4]:

cl =

LAR−1X
t=D

Gtcl−t + ul, (4)

where LAR is the length of the auto-regressive coefficients,Gt is the
tth tap of the auto-regressive coefficient, D is the tap-length of the
early reflection, and ul is the summation of the direct path and the
early reflection, which is defined as follows:

ul =

D−1X
t=0

htsl−t. (5)

The multichannel observed signal can be expressed as follows:

xl = cl +wl. (6)

In the previously proposed Kalman smoother based speech derever-
beration technique [5], (4) is regarded as a state-transition equation,
and (6) is regarded as an observation equation. Sufficient statistics
of latent variables cl and all the parameters are estimated so as to
increase the likelihood function monotonically. However, the pre-
viously proposed technique is an offline method. The state vector
is updated after that the microphone input signals of all frames are
observed. In this paper, we propose an online extension of the pre-
viously proposed technique, which estimates the sufficient statistics
of the latent variables and updates all the parameters in an online
manner.

3. PROPOSED METHOD

3.1. Optimization of dereverberation filter

The multichannel speech dereverberation filter G = {Gt}D≤t≤LAR−1

is updated by using a Bayesian approach [7] based on maximum a
posteriori estimation in an online manner as follows:

Ĝl = argmax
G

p(G|Cl),

= argmax
G

p(cl|G, Cl−1)p(G|Cl−1), (7)

where Ĝl is estimation of G after that the lth observed signal is ob-
tained and Cl = {cl′}1≤l′≤l. The probabilistic density function
(PDF) of the reverberant noiseless speech signal cl is modeled as a
time-varying Gaussian distribution [4] as follows:

p(cl|G, Cl−1) = N (

LAR−1X
t=D

Gtcl−t, vlR), (8)

where vl is the time-varying variance of the original speech signal,
R is the covariance matrix of the steering vector of summation of
the direct path and the early reflection. Under the condition that
l − 1th reverberant and noiseless multichannel signal is given, the

PDF of the auto-regressive model is set to the following Gaussian
distribution:

p(G|Cl−1) = N (Ĝl−1, V̂l−1). (9)

Therefore,

p(G|Cl) = N (Ĝl, V̂l), (10)

where

Ĝl = V̂l(D
H
l−1(vlR)−1cl + V −1

l−1Ĝl−1),

V̂l = (DH
l−1(vlR)−1Dl−1 + V −1

l−1)
−1, (11)

where Dl−1 can be calculated from Cl−1. By using the forgetting
factor α, Ĝl and V̂l are updated in an online manner as follows:

Ĝl = V̂l(D
H
l−1(vlR)−1cl + αV −1

l−1Ĝl−1),

V̂l = (DH
l−1(vlR)−1Dl−1 + αV −1

l−1)
−1. (12)

p(G|Cl) assumes that Cl is obtained, but Cl is the noiseless micro-
phone input signal, which is not observed in advance. In the con-
ventional method, the original microphone input signals are set to Cl

as Cl = Xl. However, the noisy microphone input signal is harm-
ful for optimization of dereverberation filters [5]. In the proposed
method, we utilize an estimated noiseless microphone input signals
as follows:

Cl = E[Cl|xl, Cl−1, Ĝl−1, V̂l−1], (13)

where E[·] is an operator which calculates mathematical expecta-
tion.

3.2. Estimation of noiseless microphone input signal

The noiseless microphone input signal of the lth frame is estimated
as follows:

cl =

LAR−1X
t=D

E[Gtcl−t|xl, Cl−1, Ĝl−1, V̂l−1]

+ E[ul|xl, Cl−1, Ĝl−1, V̂l−1], (14)

where

E[Gtcl−t|xl, Cl−1, Ĝl−1, V̂l−1] = Ĝl−1,tcl−t + r̂l, (15)

where r̂l is estimation of the residual reverberation. The expected
values of the early reflection and the residual reverberation are
E[ul|xl, Cl−1, Ĝl−1, V̂l−1] = E[ul|yl, V̂l−1] and
E[rl|xl, Cl−1, Ĝl−1, V̂l−1]= E[rl|yl, V̂l−1], where yl = xl −
Ĝl−1Cl−1. ûl = E[ul|yl, V̂l−1] can be obtained by using multi-
channel Wiener filtering as ûl = vlR(Ry,l)

−1yl. The residual re-
verberation is also estimated as r̂l = Dl−1V̂l−1D

H
l−1R(Ry,l)

−1yl,
where Ry,l is the covariance matrix of yl, which is calculated as
follows:

Ry,l = vlR+Rw +Dl−1V̂l−1D
H
l−1, (16)

Dl−1V̂l−1D
H
l−1 is the covariance matrix of the residual reverbera-

tion. Therefore, the noiseless reverberant microphone input signals
is obtained as follows:

cl =

LAR−1X
t=D

Ĝl−1,tcl−t + (vlR+Dl−1V̂l−1D
H
l−1)(Ry,l)

−1yl.

(17)
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3.3. Parameter optimization at each frame

In each frame, the parameters θ = {vl,R,Rw}are updated so as to
increase the likelihood function p(θ|xl, Cl−1, Ĝl−1, V̂l−1) by using
online local Gaussian modeling [9]. The E-step and the M-step are
performed in an iterative manner.
E step at tth iteration:

Ry,l = v
(t−1)
l R(t−1) +R(t−1)

w +Dl−1V̂l−1D
H
l−1, (18)

Wu = v
(t−1)
l R(t−1)R−1

y,l , (19)

Ww = R(t−1)
w R−1

y,l , (20)
ĉl = Wuyl, (21)

ĉw,l = Wwyl, (22)

Rc,n,l = ĉlĉ
H
l + (I −Wu)v

(t−1)
l R(t−1), (23)

Rc,w,l = ĉw,lĉ
H
w,l + (I −Ww)R(t−1)

w . (24)

M step at tth iteration:

v
(t)
l =

1

Nm
tr(R(t−1)Rc,n,l), (25)

R(t) = βR+ (1− β)
1

v
(t)
l

Rc,n,l, (26)

R(t)
w = βRw + (1− β)Rc,w,l, (27)

where β is the forgetting factor for the parameters. At last, the co-
variance matrix is updated asR = R(Ni),Rw = R

(Ni)
w , where the

Ni is the number of iterations.

3.4. Estimation of output signal after dereverberation and noise
reduction

Finally, the output signal is obtained by using the multichannel
Wiener filter as ĉl = Wuyl, where the residual reverberation and
the background noise signal are reduced by the multichannel Wiener
filter.

4. EXPERIMENT

4.1. Experimental conditions

Experimental environment and microphone array alignment are
shown in Fig. 1. The reverberation time was about 700 ms. The
impulse responses were recorded at Location 1, 2, 3 by using TSP
(Time Stretched Pulse) method [10]. The speech source is con-
volved with the recorded impulse response. The original source
signals were extracted from TIMIT database [11]. Two utterances
of each speaker were merged into single source signal. The number
of the speech sources was 34. The parameters are shown in Tab. 1.

S/N of the microphone input signal was set to 0, 10 dB, 20 dB.
In this experiments, the following 4 methods were compared.

• M1: No noise reduction and no residual noise reduction with
time-invariant assumption of a speech source, optimization of
dereverberation filter from noisy observed signal ( Rw = 0,
vl = 1, cl = xl, Cl = Xl, andRy,l = vlR)

• M2: M1 + time-varying assumption of a speech source

• M3: M2+ noise reduction

• M4: M3+ optimization of dereverberation filter from noiseless
observed signal

Loc. 2

Loc. 3

2.7 

m

3.4 m

Location 

(Loc.) 1

Microphone 

array

1.8 m
m

Fig. 1. Experimental environment and microphone array alignment

Table 1. Evaluation conditions
Sampling rate (Hz) 16,000
Frame size (pt) 1024
Frame shift (pt) 256
Number of microphones Nm 3
Number of EM iterations 20
α 0.96
β 0.99
D 2
Lw 10

• PROPOSED: M4+ residual noise reduction (the proposed
method)

4.2. Evaluation results

Evaluation measure was SDR (Signal To Distortion Ratio) improve-
ment, which is the averaged value of 34 utterances. The evaluation
results when the S/N of the microphone input signal is 0 dB, 10 dB,
20 dB are shown in Tab. 2. The experimental results for the first
utterance and the second utterance are shown separately for each re-
sult. In each result, the experimental result show that the proposed
method can reduce background noise and reverberation more effec-
tively than the other methods. The output waveforms and spectro-
grams are shown in Fig. 2. It is shown that the proposed method
can reduce more background noise and reverberation than the other
methods.

5. CONCLUSION

In this paper, we propose a novel online speech dereverberation with
multichannel microphone input signals for noisy environments, in
which noise reduction and residual reverberation reduction are in-
tegrated effectively. Experimental results show that the proposed
method can reduce reverberation and background noise effectively.

REFERENCES

[1] M. Miyoshi and Y. Kaneda, “Inverse filtering of room acous-
tics,” IEEE Trans. ASSP, vol. 30, no. 2, pp. 145-152,
Feb. 1988.

23rd European Signal Processing Conference (EUSIPCO)

1085



Table 2. Evaluation results (SDR improvement): “Bold” means highest SDR improvement at each row.

PROPOSED M1 M2 M3 M4

SNR 0 dB case

LOCATION 1 FIRST 4.11 0.83 0.77 3.61 3.48
SECOND 6.80 0.16 1.27 4.09 4.77

LOCATION 2 FIRST 3.81 0.92 0.75 3.36 3.24
SECOND 6.82 0.54 1.34 4.10 4.69

LOCATION 3 FIRST 3.70 0.86 0.71 3.29 3.16
SECOND 6.68 0.65 1.34 4.02 4.57

SNR 10 dB case

LOCATION 1 FIRST 2.27 1.19 1.13 1.77 1.71
SECOND 6.59 -0.54 3.58 4.74 5.40

LOCATION 2 FIRST 1.99 1.33 1.00 1.54 1.49
SECOND 6.33 0.55 3.54 4.55 5.02

LOCATION 3 FIRST 1.84 1.17 0.91 1.44 1.38
SECOND 6.17 0.88 3.48 4.42 4.82

SNR 20 dB case

LOCATION 1 FIRST 1.99 1.44 1.45 1.53 1.50
SECOND 7.07 -0.75 5.95 6.19 6.71

LOCATION 2 FIRST 1.86 1.56 1.23 1.30 1.27
SECOND 6.75 0.69 5.55 5.69 6.01

LOCATION 3 FIRST 1.62 1.38 1.10 1.17 1.14
SECOND 6.43 1.04 5.37 5.50 5.74

Fig. 2. Examples of output waveforms and spectrograms

[2] K. Kinoshita, M. Delcroix, T. Nakatani, and M. Miyoshi,
“Suppression of Late Reverberation Effect on Speech Sig-
nal Using Long-Term Multiple-step Linear Prediction,” IEEE

Trans. Audio, Speech, and Language Process., vol. 17, no. 4,
pp. 534–545, May 2009.

[3] T. Yoshioka, T. Nakatani, M. Miyoshi, and H. G. Okuno,

23rd European Signal Processing Conference (EUSIPCO)

1086



“Blind separation and dereverberation of speech mixtures by
joint optimization,” IEEE Trans. Audio, Speech, and Language
Process., vol. 19, no. 1, pp. 69–84, Jan. 2011.

[4] M. Togami, Y. Kawaguchi, R. Takeda, Y. Obuchi, and N. Nuk-
aga, “Optimized Speech Dereverberation From Probabilistic
Perspective for Time Varying Acoustic Transfer Function,”
IEEE Trans. Audio, Speech, and Language Process., vol. 21,
no. 7, pp. 1369–1380, Jul. 2013.

[5] M. Togami and Y. Kawaguchi, “Noise Robust Speech Dere-
verberation with Kalman Smoother,” Proc. ICASSP2013,
pp. 7447–7451, 2013/5.

[6] A.H. Jazwinski, Stochastic Processes and Filtering Theory.
Academic Press, 1970.

[7] T. Yoshioka, H. Tachibana, T. Nakatani, and M. Miyoshi,
“Adaptive dereverberation of speech signals with
speaker-position change detection,” in Proc. Int. Conf.
Acoust. Speech, Signal Process., 2009, pp. 3733–3736.

[8] N.Q.K. Duong, E. Vincent, R. Gribonval, “Under-determined
reverberant audio source separation using a full-rank spa-
tial covariance model,” IEEE Trans. Speech Audio Process.,
vol. 18, no. 7, pp. 1830–1840, 2010/9.

[9] M. Togami, “Online speech source separation based on
maximum likelihood of Local Gaussian modeling,” IEEE
ICASSP2011, pp. 213–216, 2011.

[10] Y. Suzuki, F. Asano, H.Y. Kim, and T. Sone, “An optimum
computer-generated pulse signal suitable for the measurement
of very long impulse responses,” J. Acoust. Soc. Amer. vol. 97,
no. 2, pp. 1119–1123, Feb. 1995.

[11] TIMIT corpus [Online]. Available: http://www.ldc.upenn.edu/
Catalog/CatalogEntry.jsp?catalogId=LDC93S1.

23rd European Signal Processing Conference (EUSIPCO)

1087


