
GNU RADIO BASED DIGITAL BEAMFORMING SYSTEM: BER AND COMPUTATIONAL
PERFORMANCE ANALYSIS

Sarankumar Balakrishnan, Lay Teen Ong

Temasek Laboratories, National University of Singapore, Singapore

ABSTRACT

The rapid growth in computational capacity of general pur-
pose processors (GPPs) has allowed for an alternative to tra-
ditional implementation of digital signal processing systems.
Signal processing algorithms that were once implemented in
dedicated field programmable gate arrays (FPGAs) and em-
bedded digital signal processors are now being increasingly
implemented using softwares. This paper presents the devel-
opment of a GPP based digital beamforming system using
GNU Radio -an Open Source software development platform
for signal processing applications to be used with software
defined radio systems. The developed beamforming system is
based on minimum variance distortionless response (MVDR)
algorithm. We study the Bit Error Rate (BER) performance
of the beamforming system. We provide the experimental
BER results to highlight the signal recovery capabilities of
the beamformer. This paper also addresses the challenges
of real-time implementation and analyses the computational
complexity of the GPP based digital beamforming system.

Index Terms— GNU Radio, software defined radio, dig-
ital beamforming

1. INTRODUCTION

Digital beamforming is a signal processing technique to con-
trol the reception pattern of the antenna array such that, nulls
are placed in the direction of the interference signals while
maintaining appropriate gain in the direction of the desired
signal. Antenna array based digital beamforming systems ex-
ploit the spatial diversity to achieve interference mitigation.

Traditional beamforming systems are based on FPGA
technology which is a cost effective solution but offers very
little flexibility in terms of design and quick prototyping.
They are associated with high development costs and long
time-to-market and are customized for a specific application.
The exponential increase in the computational capabilities
of modern day General Purpose Processors (GPPs) offers
alternative design to the traditional design using FPGAs. An
alternative approach is to use GPP based Software Defined
Radio (SDR) [1]. SDR based signal processing systems have
made significant progress over the years. In SDR, the signal
processing algorithm is typically implemented in a software

framework rather than being embedded in a chip. This offers
flexibility in quick prototyping of signal processing appli-
cations. Some of the widely used SDR systems that uses
GPPs are GNU Radio [2], OSSIE [3], and Microsoft’s Sora
[4]. Some of the practical examples of a GPP based SDR
systems are the works in [5] and [6] that uses SDR concept
to demonstrate IEEE 802.11a/g/p OFDM receiver system and
an interference canceller respectively.

Despite the flexibility offered by the GPP based SDR sys-
tems, several limitations remains to be seen. Notably, the re-
source allocation and real-time capabilities of general purpose
processors. Unlike FPGAs in which the available resources
are optimized for the application, GPPs are designed for run-
ning several applications simultaneously thus competing for
available resources. Moreover, real world signal processing
systems are fundamentally real-time. The system must com-
plete processing the incoming data segment before the next
one arrives. These limitations places stringent requirements
on the resource utilization of the signal processing systems.

In this paper we discuss the performance and computa-
tional complexity of software based digital beamforming sys-
tem. The contribution of this work is the implementation
and performance analysis of GNU Radio based digital beam-
forming system for real-time operation. This paper is orga-
nized as follows. Section II discusses the architecture of the
software based digital beamforming system, the signal model
and presents the MVDR beamforming algorithm. Section III
provides performance analysis in terms of BER. The real-
time capabilities and computational resources of the GNU Ra-
dio software based digital beamforming system are also dis-
cussed. Section IV offers conclusion.

2. DIGITAL BEAMFORMING ARCHITECTURE

Figure 1 gives an overview of the software based digital
beamforming architecture together with the BPSK receiver.
The architecture has a N-channel RF front end to down-
convert and digitize the signal received by the N element
antenna array and a software part where the signal process-
ing algorithms are implemented. A host driver at the GPP
known as UHD (Universal Hardware Driver) enables com-
munication between the RF front end and the software part
in the GPP using Gigabit Ethernet (GigE). On the hardware

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 1621

Fig. 1. Overview of the digital beamforming system and the BPSK receiver.

side, there are several commercial RF front ends that are
available to interface with the software architecture. For in-
stance, the Universal Software Radio Peripheral (USRP) [7]
is a software defined radio equipped with RF daughterboards
that can tune to different frequencies, downconvert and send
digitized samples to the host processing system. With the
USRP supporting wide range of RF front ends targeted for
various applications, the development work is entirely of-
floaded to the software domain. The software part of the
digital beamforming system is based on GNU Radio, an open
source software framework for implementing software radio
applications. GNU Radio provides libraries of primitive C++
signal processing blocks for implementing various signal
processing and communication applications. In GNU Radio,
signal processing applications are written as one-directional
graph of DSP blocks known as flowgraphs. The output of
one DSP block serves as input to other DSP blocks. GNU
Radio uses thread-per-block scheduler. Each DSP block in a
GNU Radio flowgraph is executed by its own thread. The OS
scheduler automatically distributes these threads in a multi-
core processor. Flow of data between DSP blocks is through
shared memory. The first DSP block in the flowgraph writes
data to the shared memory and the second DSP block reads
the data from the shared memory. The performance of the
software part is crucial since it has to process the incoming
digitized samples from the RF front end in real-time. To
achieve the required computational speed imposed by the
sample rate of the RF front end, the signal processing al-
gorithms are implemented using C++ and Armadillo [8], an
open source and optimized C++ linear algebra library. The
software architecture is also modular. The modular structure
makes it easy to add new beamforming algorithms and study
the performances. For the study presented in this paper, we
have implemented an 8-channel Minimum Variance Distor-
tionless Response (MVDR) beamforming algorithm [9, 10]
which will be discussed in the subsequent sections. Also, to
study the BER performance of the beamforming system, a
BPSK receiver with phase and frequency synchronization is
designed and implemented using GNU Radio.

2.1. Antenna Geometry

A uniform circular array (UCA) with N elements is consid-
ered. Let (θ, φ) denote the elevation angle and azimuth angle
of the signal impinging on the antenna array. The array factor
AF (θ, φ) for this antenna array is given by [11]

AFUCA(θ, φ) =

N∑
n=1

αne
jβa sin(θ) cos(φ−φn) (1)

where αn is the complex antenna excitation of the nth ele-
ment, a is the radius of the UCA, θ is the elevation angle and
φ is the azimuth angle. φn = 2πn

(N−1) is the angular position
of the nth element. β = 2π

λ defines the wave number and λ is
the wavelength.

Assuming M signals are impinging at the N element uni-
form circular array, the received signal x(k) at sample in-
stance k can be expressed as

x(k) = A(θ, φ)s(k) + n(k) (2)

where x(k) = [x1(k), x2(k), ..., xN (k)], n(k)=
[n1(k), n2(k), ..., nN (k)] ∈ CN×1 is complex weight vector
whose components corresponds to the weights of the beam-
former, (�)T denotes the transpose operator and (�)H denotes
the Hermitian transpose operator. The weights are computed
by the MVDR algorithm which is described in the following
section.

2.2. Minimum Variance Distortionless Response

The optimal weight vector W is obtained by a classical
minimum variance distortionless response (MVDR) algo-
rithm. MVDR algorithm minimizes the total output power

E
{∥∥∥WHX

∥∥∥2}, where X is the signal received at N ele-

ments, at the output of the antenna array while keeping unit
gain in the look direction of the desired signal. i.e., it ensures
distortionless response of the beamformer in the direction of
the desired signal. The corresponding optimization problem
is

min
w

WHRxxW s.t. WHa(θs) = 1 (3)

23rd European Signal Processing Conference (EUSIPCO)

1622

where Rxx is the signal covariance matrix. The solution to
the optimization problem is given as

WMVDR =
R−1a(θs)

a(θs)HR−1a(θs)
(4)

where (�)−1 denotes the inverse of the positive definite square
matrix and a(θs) is the steering vector of the desired signal. In
practice,the interference-plus-noise covariance matrix is not
known a priori and therefore it is substituted with an estimate
of the sample covariance matrix of the received signal

R̂ ,
1

k

K∑
k=1

X(k)XH(k) (5)

where k is the number of data snapshots available.

2.3. Digital Beamformer GNU Radio Blocks

The key GNU Radio signal processing blocks in the MVDR
digital beamformer architecture shown in Figure 1 is tabu-
lated in Table 1. The blocks in Table 1 are custom developed
using C++ and Armadillo. In addition to the main blocks
mentioned in Table 1, there is a frequency & phase synchro-
nization block and a decoder block which are part of the
BPSK receiver, a BERT block to compute the BER and an
UHD block which is used to interface the GNU Radio to the
USRP hardware. These blocks are available within the GNU
Radio framework. The functions of the individual blocks in
the digital beamformer are discussed in the following:

• UHD: UHD is a block available within the GNU Radio.
This block acts as an interface to the USRP hardware.
It receives data samples from the USRP receivers and
forwards them to the blocks in the downstream.

• sample covariance matrix: this block receives the data
samples from the UHD block and calculates the sam-
ple covariance matrix Rxx given in (5). The output of
this block is provided to the downstream block inverse
covariance matrix.

• inverse covariance matrix: it calculates the inverse of
an 8× 8 covariance matrix.

• beamformer weight: this block computes the beam-
former weight vector given in (4).

• beamformer sum: this block receives the computed
beamformer weight vector from the beamformer weight
block and the data samples from the UHD block as its
input. The output of this block is the beamformed
signal.

• frequency & phase synchronisation: this block per-
forms the frequency and phase synchronisation on the
beamformed signal. The output of this block is sent to
the downstream block decoder.

GNU Radio Block Notation
Sample Covariance Matrix Rxx
Inverse Covariance Matrix R−1

xx

Beamformer Weight W = R−1a(θs)
a(θs)HR−1a(θs)

Beamformer Sum y = WHX

Table 1. Signal Processing Blocks in the Digital Beamformer.

• decoder: this block performs BPSK decoding on the
data arriving at its input.

• bert: the BER is computed by this block.

3. SIMULATION

In this section, the performance of the digital beamforming
system in terms of BER, and computational complexity are
discussed. The simulations were carried over an AWGN
channel. An eight elements circular antenna array with an
element spacing of 0.5λ and centre frequency f = 1.575
GHz is considered. 3000 data snapshots were considered to
calculate the array covariance matrix. The signal sampling
rate is 5 MSps (Mega Samples per second).

3.1. Bit Error Rate

The performance of the GNU Radio based 8-channel beam-
forming system was measured in terms of the BER of a BPSK
signal arriving at the azimuth and elevation angle (θ, φ) =
(0◦, 0◦). To show the BER gain achieved with beamforming,
the BER performance of an 8-channel MVDR beamformer
with BPSK receiver is compared with the BER of a single
channel BPSK receiver. The single channel BER of a differ-
entially encoded BPSK signal in an AWGN channel is given
as [12]

BER =
1

2
erfc

(√
Eb
N0

)(
1− erfc

(√
Eb
N0

))
(6)

where erfc(�) is the complementary error function. The theo-
retical BER gain of an N channel beamforming system when
compared to a single channel system is given as 10 log(N).
For an 8-channel beamformer, the theoretical BER gain is
9 dB. Figure 2 shows the probability of bit error for a sin-
gle channel BPSK receiver using (6) and its experimental re-
sults matches closely. The experimental BER of the 8-channel
MVDR beamformer under AWGN conditions is also included
in Figure 2. It is observed from Figure 2, the probability of
bit error for an 8 channel MVDR beamformer has a BER gain
of 9 dB in comparison to the single channel BPSK system.

23rd European Signal Processing Conference (EUSIPCO)

1623

Fig. 2. BER performance of MVDR algorithm compared with
conventional BPSK system.

3.2. Computational Analysis

This section introduces the performance tools and perfor-
mance metrics used to analyse the MVDR beamforming
system. This study is important since it shows that, the beam-
forming system in its current state does not reach the perfor-
mance limits of the computer system and thus can perform
beamforming computations without limitations. Otherwise,
the beamforming system would not be able to cope with the
sample rate of the incoming data stream, resulting in data
samples drop-offs. This is referred to as near-real-time or
low latency operation. To achieve low latency operation of
the MVDR digital beamforming system, it is important to
know the resource utilization of each block in the beamform-
ing system. Knowing the computational requirements and
performance of each block in the digital beamforming sys-
tem helps us to identify the part of the system that utilizes
heavy computational resources and hence requiring resource
optimization. Unlike FPGA’s in which the timings are con-
trolled by a common clock that can guarantee specific timing
requirements, the software radios which run on GPP’s with
various operating systems (OS) like Linux, have uncertain
execution times due to the shared scheduling nature of the
operating system (soft real-time) [13] and other external
processes. The problem is compounded especially if the
application is multi-threaded. Because of these limitations,
exact timing analysis of the MVDR beamforming system is
complicated. Hence, we limit our analysis to the metrics
that can be analysed with the tools available within GNU
Radio platform. The analysed performance metric includes
the average utilization of the buffer and the average runtime
of various blocks of the beamforming system. The simula-
tions were carried on a PC with an Intel i7-3770 processor
and 16 GB of RAM, running Ubuntu 12.04. The algebraic

Computation Size Cost
Rxx N ×K ×K ×N O(N2K)

R−1
xx N ×N O(N3)

W = R−1a(θs)
a(θs)HR−1a(θs)

N ×N ×N × 1 O(2N2 + 3N)

y = WHX 1×N ×N ×K O(NK)

Table 2. Computational Complexity of MVDR Algorithm.

operations mentioned in Table 2 were implemented using
C++ and Armadillo linear algebra library. The computational
cost in Table 2 is referred from [14]. Figure 3 represents the
buffer fullness and runtime performances of the beamforming
system in the form of a flow graph. The node size in the flow
graph is proportional to the runtime and the edge thickness
is proportional to the buffer fullness of the beamforming sys-
tem. This buffer utilization investigation provides insight into
where the samples might be queued resulting in the dropping
of samples and affecting the performance of the system. This
result gives an indication that the buffer from the source to the
spatial auto-correlation matrix is near full. This is because,
the spatial auto-correlation matrix needs to store and process
K snapshots of data at any given time. However, we can see
that the buffers of the path involving inverse auto-correlation
block and MVDR weight block are near empty, indicating
that all the samples are almost immediately consumed. Fig-
ure 4 shows the average buffer utilization of the individual
blocks namely ’signal source’, ’spatial correlation’, ’inverse
correlation’ and ’MVDR weight’ in the beamforming system.
From the results, it can be seen that the source block (signal
source) utilizes maximum buffer. The buffer utilization of
rest of the blocks in the system is negligible, indicating there
is no queuing up of samples that would result in data over-
flow. Another important performance metric considered for
low latency capabilities is average runtime of the algorithm.
Figure 5 shows the average runtime of each of the blocks in
the beamforming system. It is observed that, about approxi-
mately 65% of the computational time is spent in performing
the spatial auto-correlation matrix. It is reasonable given the
algorithmic complexity in processing K data snapshots at
any given instant. The inverse of the spatial auto-correlation
matrix and beamforming weight computation processes takes
about 28% and 5% respectively. These results are in con-
formance with the complexity of various operations given in
Table 2.

4. CONCLUSIONS

In this paper, we presented a GNU Radio based MVDR digital
beamforming system. The performance of the beamforming
system in recovering the desired signal was studied in terms
of the BER achieved. The BER simulations match the theo-
retical BER gain. Understanding the computational complex-

23rd European Signal Processing Conference (EUSIPCO)

1624

Fig. 3. Flowgraph representing the buffer utilization and run-
time performance of the beamforming system.

Fig. 4. Average buffer utilization of individual blocks of the
beamforming system.

Fig. 5. Total runtime consumed by individual blocks of the
beamforming system.

ity of the beamforming system is critical to achieve real-time
capability. To that end, our work also investigates the buffer
utilization and runtime complexity of the beamforming sys-
tem. Performance measurements confirms the implemented
software beamforming system was able to achieve real-time
performance.

5. REFERENCES

[1] J. Mitola, “The software radio architecture,” Communi-
cations Magazine, IEEE, vol. 33, no. 5, pp. 26–38, May

1995.

[2] GNU Radio Website, accessed June 2014. [Online].
Available: http://www.gnuradio.org

[3] [Online]. Available: http://ossie.wireless.vt.edu

[4] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M.
Voelker, “Sora: high-performance software radio us-
ing general-purpose multi-core processors,” Communi-
cations of the ACM, vol. 54, no. 1, pp. 99–107, 2011.

[5] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An
IEEE 802.11a/g/p OFDM Receiver for GNU Radio,” in
ACM SIGCOMM 2013, 2nd ACM SIGCOMM Workshop
of Software Radio Implementation Forum (SRIF 2013).
Hong Kong, China: ACM, August 2013, pp. 9–16.

[6] L. T. Ong, “An usrp-based interference canceller,” in
Communication Systems (ICCS), 2012 IEEE Interna-
tional Conference on. Singapore: IEEE, 2012, pp. 95–
99.

[7] Ettus research website. [Online]. Available:
http://www.ettus.com

[8] C. Sanderson, “Armadillo: An open source c++ linear
algebra library for fast prototyping and computationally
intensive experiments,” NICTA, Tech. Rep., 2010.

[9] S. Haykin, Adaptive Filter Theory (3rd Ed.). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[10] J. Capon, “High-resolution frequency-wavenumber
spectrum analysis,” Proceedings of the IEEE, vol. 57,
no. 8, pp. 1408–1418, Aug 1969.

[11] C. A. Balanis, Antenna Theory: Analysis and Design.
Wiley-Interscience, 2005.

[12] J. G. Proakis, Digital communications, 1995. McGraw-
Hill, New York.

[13] T. W. Rondeau, T. O’Shea, and N. Goergen, “Inspecting
gnu radio applications with controlport and performance
counters,” in Proceedings of the second workshop on
Software radio implementation forum. ACM, 2013,
pp. 65–70.

[14] P. C. Javier Arribas, Carles FernndezPrades, “Multi-
antenna techniques for interference mitigation in GNSS
signal acquisition,” EURASIP Journal on Advances in
Signal Processing 2013, 2013:143.

23rd European Signal Processing Conference (EUSIPCO)

1625

