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ABSTRACT

In this work, we extend on our recently proposed block sparse
chroma estimator, such that the method also allows for signals
with time-varying envelopes. Using a spline-based amplitude
modulation of the chroma dictionary, the refined estimator is
able to model longer frames than our earlier approach, as well
as to model highly time-localized signals, and signals con-
taining sudden bursts, such as trumpet or trombone signals,
thus retaining more signal information than other methods for
chroma estimation. The performance of the proposed estima-
tor is evaluated on a recorded trumpet signal, clearly illus-
trating the improved performance, as compared to other used
techniques.

Index Terms— chromagram, amplitude modulation, block
sparsity, convex optimization, ADMM

1. INTRODUCTION

Music is an art-form that most enjoy. Even more so today
than earlier, as personalized computers and smart telephones
have enabled ubiquitous music listening and allow everyone
to be their own hobby-DJ. When listening, learning, com-
posing, mixing, and identifying music, there are a number
of aspects and approaches one may utilize, such as a compo-
sition’s timbre, pitch, tempo, beat, rhythm, and chroma (see,
e.g. [1]). Many such features involve analyzing the spectral
content of the signal. Pitch, as a musical concept, is an or-
dinal scale of sounds which is related to, but not necessar-
ily as cardinally specific, as the frequency scale. A single
pitch is from a spectral point of view a combination of many
narrowband spectral peaks, which typically share an integer
relationship in terms of their frequencies. In this sense, the
pitch is typically defined by the component of lowest fre-
quency, i.e., the fundamental, whereas the other frequencies
are referred to as its harmonics. The number of harmonics
in a certain pitch, as well as the magnitude power of these,
varies greatly between different sounds. Identifying pitches
in a way similar to our human perception has proved to be
a difficult estimation problem. Partly, this difficulty is due
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to octaves; two pitches where one has exactly twice the fun-
damental frequency as the other are referred to as being oc-
tave equivalent as the distance in pitch by a factor of two is
called an octave. The octave equivalence is a central part of
the Western musicological system. Within each octave, the
Western musical system defines twelve so called semi-tones,
or chromas. The same chroma is then cyclically defined to
each doubling of fundamental frequency, for all twelve chro-
mas [2]. Methods for multi-pitch estimation in audio have
been thoroughly examined in the literature (see e.g., [3–5],
and the references therein). Typically, trouble arises when the
complexity of the audio signal increases, such that there are
simultaneously two or more pitches present, played by more
than one instrument. Separating these complex combinations
of components in the signal often proves difficult, even if the
harmonic structure of the signal is taken into account. As
introduced in [6], by collecting the pitches in groups in ac-
cordance with their respective chroma, we simplify the es-
timation, only focusing on chroma, while retaining much of
the musical information. Chroma features are widely used in
applications such as cover song detection, transcription, and
recommender systems (see, e.g. [7–9]). Most methods for
chroma estimation begin with some pitch estimation, which
then maps into its respective chroma. In this approach, some
take the harmonic structure into account, and others do not.
The commonly used method by Ellis [10] is formed via a
time-smoothed version of the short time Fourier transform,
whereas the method by Müller and Ewert uses a filterbank
approach [11]. Neither of these use the pitches’ harmonic
structure for estimation. On the other hand, taking this struc-
ture into account often requires knowledge of the number of
pitches and their respective number of harmonics, which is
notoriously difficult to obtain for multi-pitch signals. Instead,
we propose to estimate the present chromas using a sparse
model reconstruction approach, where explicit model orders
are not required. These parameters are instead controlled im-
plicitly using some tuning parameters, which may typically
be set using cross-validation, or by using some simple heuris-
tics. Recently, we proposed such a technique [6], generaliz-
ing an earlier work exploiting block sparsity for multi-pitch
estimation [12]. Herein, we extend on this model by general-
izing it in accordance with the methods presented in [13, 14].
The proposed extension allows the signal to have a time vary-
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Fig. 1. The normalized log-chromagram for the trumpet scale
using the method by Müller and Ewert.

ing amplitude, extending the usability of the method to also
allow for highly non-stationary signals, or signals with sud-
den bursts, like trumpets, whose nature may easily be mis-
interpreted using ordinary chroma selection techniques. As
in [13], the extended model uses a spline basis to detail the
time-varying envelope of the signal, thereby enabling the am-
plitudes to evolve smoothly with time. The time-localization
offered by the new method also enables a better signal match-
ing, such that more overall information is retained in the re-
sulting chromagram. The performance of the proposed es-
timator is illustrated using a recorded trumpet scale, clearly
illustrating the improved performance as compared to typical
reference methods, and to our earlier proposed estimator.

2. THE SIGNAL MODEL

As shown in [6], a harmonically related audio signal may be
well modeled as a sum of K distinct pitch signals, each con-
sisting of Lk harmonically related sinusoids with normalized
fundamental frequencies fk. In this work, we allow the am-
plitudes of the harmonic components to vary over time, such
that

y(t) =
KX

k=1

LkX

`=1

↵k,`(t)e
i2⇡fk`t, (1)

for t = 1, ..., N , where ↵k,`(t) represents the amplitude of the
lth harmonic of the kth pitch, at time instant t. Reminiscent
to [13], we model the amplitudes’ time-varying nature using
a spline basis with uniformly spaced knots, i.e.,

↵k,l =
RX

r=1

�rsr,k,l = �sk,l. (2)

Here, the amplitude vector ↵k,l is a linear combination of the
�r 2 RN spline basis vectors, and sr,k,l denotes the corre-
sponding complex amplitude at spline point r of the lth har-
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Fig. 2. The normalized log-chromagram for the trumpetscale
scale using the method developed by Ellis.

monic for the kth source, and with

↵k,l =
⇥
↵k,l(1) ↵k,l(2) · · · ↵k,l(N)

⇤T
, (3)

sk,l =
⇥
s1,k,l s2,k,l · · · sR,k,l

⇤T
, (4)

� =
⇥
�1 �2 · · · �R

⇤
, (5)

where [·]T denotes the transpose. To mould our algorithm for
the use on harmonic audio signals, we, in accordance with [6],
make the partition of different pitches into the twelve equiv-
alence classes known as C,C#, D,D#, E, F, F#, G,G#,
A,A#, andB. Furthermore, we design the range of fk to
have the structure fk = fbase · 2ck/12+ok where ck and ok
denote the equivalence class and the octave belonging of the
pitch k, respectively, and fbase denotes a normalized tuning
parameter. The reason for this special design of the range
space is that it conforms with the here examined Western mu-
sic scale, which uses a cyclic scale partitioned with twelve
semitones within an octave, spaced by a relative absolute fre-
quency of 21/12 [2]. In this work, we have chosen the tuning
parameter fbase = 440/29/12+4 Hz, which corresponds to the
note C0. Reminiscent to [6], we thus propose to extend the
signal model to

y(t) ⇡
11X

c=0

ŌX

o=O
¯

LmaxX

`=1

↵c,o,`(t)e
i2⇡fbase2

(c/12+o)`t, (6)

with O
¯

, Ō, and Lmax denoting the lowest considered octave,
the highest considered octave, and the maximum number of
overtones, respectively. This may be expressed compactly as

y(t) =
11X

c=1

Wc(t)↵c(t), (7)
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Fig. 3. The normalized log-chromagram for the trumpet scale
using the CEBS method.

where

W c =
h
w

O
¯
c · · · w

Ō
c

iT
,

wc =
⇥
z

1
c · · · z

Lmax
c

⇤T
,

zc =
h
ei2⇡2

c/121 · · · ei2⇡2
c/12N

iT
,

↵c =
h
↵c,O

¯
,1 · · · ↵c,Ō,Lmax

· · · ↵c,Ō,Lmax

iT
.

Using (2), one may rewrite (7) as

y(t) =
11X

c=0

diag(�Sc,oW
T
c,o), (8)

where

Sc,o =
⇥
sc,o,1 · · · sc,o,Lmax

⇤
, (9)

sc,o,l =
⇥
s1,c,o,l · · · sR,c,o,l

⇤T
. (10)

As a result, the sought chroma features of the considered sig-
nal frame may be found as the parameters minimizing

minimize
S0,O

¯
···S11,Ō

1

2

�������

�������
y �

11X

c=0

ŌX

o=O
¯

diag(�Sc,oW
T
c,o)

�������

�������

2

2

, (11)

where y denotes the vector containing the measured signal.
To promote a sparse solution, one may rewrite and extend
(11) as

minimize
SP

1

2

�����

�����y �
PX

p=1

diag(�SpW
T
p )

�����

�����

2

2

+�

PX

p=1

LmaxX

l=1

||sp,l||2 + �

11X

c=0

���
���S̃c

���
���
F
,

(12)

where the reparametrization from c, o to p is
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Fig. 4. The normalized log-chromagram for the trumpet scale
using the CEAMS method.

p = 12(o�O
¯
) + c, and thus P denotes the total number of

chroma-octave pairs in the dictionar, and with

S̃c =
h
Sc,O

¯
· · · Sc,Ō

i
. (13)

The first penalty term in (12) has the effect of forcing columns
in sp,l with small l2 norm to zero, whereas the second pro-
motes the sparsity of the resulting chroma estimate.

3. IMPLEMENTATION

Since the problem at hand is convex, one may implement the
proposed method efficiently using the Alternating Direction
Method of Multipliers (ADMM) (see e.g. [15]). Denoting
S =

⇥
S1 · · · SP

⇤
, (12) may be rewritten as

minimize
X,Z

f(X) + g(Z) subject to X� Z = 0 (14)

where

f(X) =
1

2

�����

�����y �
PX

p=1

diag(�XpW p)

�����

�����

2

2

g(Z) = �

PX

p=1

LmaxX

l=1

kZp,lk2 + �

11X

c=0

kZc||F

(15)

with X and Z having the same structure as S. It is worth not-
ing that the ADMM separates the sought variable into two un-
known variables, here denoted X and Z, enabling the origi-
nal problem to be decomposed into easier sub-problems. These
are in turn solved iteratively until convergence. Introducing
the Lagrangian of (14), i.e.,

L⇢(X,Z,U) = f(X) + g(Z) +
⇢

2
||X �Z +U ||22 (16)
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Fig. 5. The normalized 3-D log-chromagram for the trumpet
scale using the CEBS method.

where U represents the scaled dual variable [15], allows (16)
to be solved iteratively as

X

(r+1) = arg min
X

L⇢(X,Z(r),U (r)), (17)

Z

(r+1) = arg min
Z

L⇢(X
(r+1),Z,U (r)), (18)

U

(r+1) = X

(r+1) �Z

(r+1) +U

(r). (19)

To solve (17), one differentiates f(X) + ⇢
2 ||X �Z +U ||22

with respect to Xp and sets the result equal to zero, which
yields

�
NX

n=1

y(n)�(n, ·)HW p(·, n)H +
⇢

2
(Xp �Zp +Up)

+
PX

u=1

NX

n=1

�(n, ·)H�(n, ·)XuW u(·, n)W p(·, n)H = 0.

By stacking all columns in X on top of each other, this may
be represented as

NX

n=1

a(p, n)Hy(n) +
⇢

2
(zp � up)

=
NX

n=1

PX

u=1

a(p, n)Ha(u, n)xu +
⇢

2
xp,

(20)

where

a(u, n) = W u(·, n)T ⌦ �(n, ·), (21)
xu = vec(Xu), (22)
zu = vec(Zu), (23)
uu = vec(Uu), (24)

with ⌦ denoting the Kronecker product, and W u(·, n) and
�(n, ·) denoting the nth column in W u and the nth row �,
respectively. Let

Fig. 6. The normalized 3-D log-chromagram for the trumpet
scale using the proposed CEAMS method.

A(p, u) =
NX

n=1

a(p, n)Ha(u, n), (25)

ỹ(p) =
NX

n=1

a(p, n)Hy(n), (26)

Ỹ =
⇥
ỹ(1) · · · ỹ(P )

⇤T
, (27)

A =

0

B@
A(1, 1) · · · A(1, P )

...
. . .

...
A(P, 1) · · · A(P, P )

1

CA . (28)

This yields the proposed algorithm, which is summarized in
Algorithm (1). We term this the Chroma Estimation of Am-
plitude Modulated Signals (CEAMS) method. The soft thresh-
olds T and T , used in Algorithm (1), are interpreted column
wise, and defined as

T (x,1) = max
✓

x

kxk2
(kxk2 � 1), 0

◆
(29)

T (X,2) =

✓
X

kXkF
(kXkF � 2), 0

◆
(30)

4. NUMERICAL RESULTS

The proposed method was evaluated using a concert C-scale
played by a trumpet acquired from [16]. Figures 1-4 illustrate
the resulting chromagrams as obtained using the estimators
in [11], [10], and [6], respectively, as well as the here pro-
posed CEAMS estimator. For the latter, we use the parame-
ter values � = 0.3 and � = 193, a window length of 1024
samples, a sampling frequency of 22050 Hz, Lmax = 9 over-
tones, and 9 spline points. As is clear from Figures 1 and
2, both the estimators in [10, 11] suffer from apparent prob-
lems in choosing the correct chroma-bin for the scale. The
CEBS estimate, shown in Figure 3, is on the other hand no-
tably cleaner, but does still suffer from some spurious chroma
features. As is clear from Figure 4, these peaks are correctly
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Fig. 7. The envelopes of the raw signal, the estimation using
CEBS, and the estimation using the proposed CEAMS.

estimated by CEAMS. Here, we have used the same basic set-
tings for CEBS as for CEAMS, and with �2 = 0.05, �3 = 3
and �4 = 0.1 (in setting these parameters, we have taken care
to find the best possible setting for CEBS). Note that the G in
the scale is not detected by any method. This is because the
fundamental frequency found in those time frames is 808 Hz,
which is slightly closer to G#5 than to G5, using concert tun-
ing. To illustrate the difference in time-localization between
CEBS and CEAMS, Figures 5 and 6 show the 3-D chroma-
grams, where it once again can be noted that CEBS fails to
identify the chroma-bin at G#. Moreover, one notes the spu-
rious peaks produced in CEBS, as they are of significant mag-
nitude, compared to the rest of the chromagram. This is in
contrast to CEAMS, where none of the above mentioned be-
haviour is present. This is also illustrated in Figure 7, showing
the envelopes of the measured signal together with the CEBS
and CEAMS estimates, clearly indicating the better fit of the
latter.
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