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ABSTRACT

The LASSO (Least Absolute Shrinkage and Selection Op-
erator) has been a popular technique for simultaneous lin-
ear regression estimation and variable selection. Robust ap-
proaches for LASSO are needed in the case of heavy-tailed
errors or severe outliers. We propose a novel robust LASSO
method that has a non-parametric flavor: it solves a criterion
function based on ranks of the residuals with LASSO penalty.
The criterion is based on pairwise differences of residuals in
the least absolute deviation (LAD) loss leading to a bounded
influence function. With the !1-criterion we can easily incor-
porate other penalties such as fused LASSO for group sparsity
and smoothness. For both methods, we propose efficient al-
gorithms for computing the solutions. Our simulation study
and application examples (image denoising, prostate cancer
data analysis) show that our method outperform the usual
LS/LASSO methods for either heavy-tailed errors or outliers,
offering better variable selection than another robust competi-
tor, LAD-LASSO method.

Index Terms— LASSO, penalized regression, sparse re-
gression, group sparsity, robust

1. INTRODUCTION

We consider the classic linear model y = α1n + Xβ + ε,
whereX =

(

x1 · · · xn

)! is a known full rank n× p de-
sign matrix (matrix of predictors), and β = (β1, . . . ,βp)!

is the unknown vector of regression coefficients with the un-
known intercept term α ∈ R. The primary interest is to es-
timate the unknown parameters, β and α where y ∈ Rn is
the observed response and ε ∈ Rn denotes the additive noise.
However, in many practical applications, the linear system is
underdetermined (p > n) or p ≈ n and the least squares
estimate (LSE) can not be computed (non-unique solutions)
or is subject to a very high-variance. Another problem with
the LSE arises when there are outliers or the noise exhibits a
heavy-tailed non-Gaussian feature. The usual solution to ill-
posed systems is to regularize the regression coefficients (i.e.
control how large they can grow).

After centering the response and the predictors, the popu-

lar LASSO [1] solves !1-penalized LS regression problem,

β̂!2(λ) = argmin
β

1

2
‖y −Xβ‖2 + λ‖β‖1 (1)

where λ is the shrinkage (penalty) parameter, ‖ ·‖ denotes the
usual Euclidean (!2-)norm on vectors and ‖ · ‖1 denotes the
!1-norm, i.e., ‖β‖1 =

∑p
j=1 |βj |. Note that Lasso is known

as basis pursuit [2] in signal processing which is commonly
expressed via constrained counterpart of equation (1) in the
formminβ ‖β‖1 s.t. ‖y−Xβ‖2 ≤ γ, where γ depends on λ.
As λ ∈ [0,∞) varies, the solution β̂!2(λ) traces out a path in
Rp, with β̂!2(0) corresponding to the conventional LSE. Note
that (1) does not involve the intercept α, which is computed
after computing β̂(λ). The larger the value of λ the greater is
the amount of shrinkage for the coefficients which are shrunk
all the way to zero.

Several robust LASSO regression approaches have been
proposed. For example, [3] advocates penalizing the LAD
objective function (LAD-LASSO) and [4] uses the least
trimmed squares criterion (LTS-LASSO), whereas [5, 6] con-
sider a penalizedM -estimator based on Huber’s loss function.
In this paper, we propose a penalized rank regression estima-
tor (Rank-LASSO) based on the rank dispersion function
with Wilcoxon scores [7]. This new objective function cor-
responds to LAD objective function of pairwise differences
of the residuals. It offers improved efficiency under normal-
ity and better model selection performance compared to the
LAD-LASSO. Recently penalties that enforce smoothness
and group/block sparsity [8,9] have received a lot of attention
and we extend our approach to the case of using fused Lasso
penalty [8].

The paper is organized as follows. In Section 2, we illus-
trate our new Rank-LASSO method in detail. In particularly,
we address the important problem of how the path of solu-
tions evolve for λ ranging over a grid from [0,λM ]. λM de-
notes the smallest value of λ that shrinks all the coefficients
to zero, and is computed efficiently with the optimal selection
of the penalty parameter using the Bayes Information Crite-
rion (BIC) [10]. Section 3 introduces an extension to Fused
LASSO penalty and data applications and simulation study
follow in Section 4. Section 5 concludes.
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2. RANK-LASSO

The LAD-LASSO [3] is a simple popular choice for the ro-
bust LASSO method which uses the penalized LAD cost
function of residuals: β̂!1(λ) = argminβ ‖y − Xβ‖1 +
λ‖β‖1, where the responses and the predictors are assumed
to be centered: the predictor variables xi1’s are centered to
have zero mean, whereas yi’s are centered to have median
equal to zero. Note that β̂!1(0) is the conventional LAD
regression estimator. However, the LAD-loss is well-known
to be inefficient under normality having 63.6 % efficiency.

In this paper, we propose a new robust extension of
LASSO based on the pairwise differences of the residuals. It
has a bounded influence function, yet attaining high efficiency
under normality:

β̂R(λ) = argmin
β

∑

i<j

|ei − ej |+ λ‖β‖1, (2)

where ei = ei(β) = yi − x!
i β denotes the ith resid-

ual for a candidate β and the summation ranges over all
N = n(n − 1)/2 pairwise differences (1 ≤ i < j ≤ n).
With the pairwise differences of the residuals in the objec-
tive function, our method does not require any preprocessing
steps such as centering of the responses and predictors. Note
that the utilized objective function is well-known in non-
parametric statistics. It co-incides with Jaeckel’s (1972) [7]
rank regression dispersion function for Wilcoxon scores:
∑n

i=1 R(ei)ei = (1/2)
∑

i<j |ei − ej |, where R(ei) is the
centered rank (Wilcoxon score) of ei among the residuals
e1, . . . , en.

Note that the objective function (2) can be written as

∑

i<j

|yi − yj − (xi − xj)
!β| =

N
∑

i=1

|ỹi − x̃!
i β|

where

ỹ =







y1 − y2
...

yn−1 − yn






, X̃ =







(x1 − x2)!

...
(xn−1 − xn)!






, (3)

are based on pairwise differences of yi’s/xi’s. If we define the
augmented measurements as

ỹa =

(

ỹ

0

)

, X̃a(λ) =

(

X̃

λIp

)

,

where 0 is a p-vector of zeros and I denotes an p × p
identity matrix, then it is easy to verify that penalized ob-
jective function (2) can be recast into a LAD criterion:
β̂R(λ) = argminβ ‖ỹa − X̃a(λ)β‖1. Since this is a con-
vex optimization problem, its global minimizer can be found
efficiently; see for [11–14] different approaches. Further-
more, uniqueness properties of LAD estimator are inherited
by Rank-Lasso.

Let us now discuss estimation of the intercept α. In
the penalized regression, the first preprocessing step is to
center the response and the predictor variables, so that the
model has no intercept term. For example β̂!2(λ) in (1) is
solved for centered data (yi ← yi − ȳ and xi ← xi − x̄

for i = 1, . . . , n), and the intercept is estimated at the last
stage by minimizing the non-penalized LS criterion function,
α̂!2(λ) = argminα

∑

i(êi(λ)−α)
2. The non-centered resid-

uals are denoted by êi(λ) = yi − x!
i β̂!2(λ), where yi and xi

are not centered when computing the intercept.
In Rank-LASSO, centering the data is not needed, be-

cause the objective function is based on the pairwise differ-
ences of residuals with which the intercept term cancels out
naturally. Here, the above approach of finding the intercept as
a minimizer of the non-penalized !1 objective function based
êi − êj is not possible. Therefore, instead of using pairwise
differences, we use the pairwise averages, and compute the
intercept as

α̂R(λ) = argmin
α

∑

i<j

∣

∣

∣

∣

êi(λ) + êj(λ)

2
− α

∣

∣

∣

∣

where êi(λ) = yi − x!
i β̂R(λ). Hence the solution α̂R is the

Hodges-Lehmann median of the estimated residuals êi.
Next, we focus on finding an optimal λ and the path of

solutions β̂(λ). Since β̂(λ) does not have a closed-form ex-
pression, it is common to compute β̂(λ) in a grid of λ val-
ues, [λ] = (λ0,λ1, . . . ,λM ), where λ0 is a small value close
to zero (no penalty) and λM is commonly chosen to be the
smallest value of λ that shrinks all the coefficients to zero.
Then, the coefficient paths β̂i(λ) is displayed over the grid of
λ values, for example, in Figure 1 for a data set with p = 8
regression coefficients. For the Rank-LASSO, the value λM

can be computed as

λM = ‖X̃!sign(ỹ)‖∞. (4)

where ‖ · ‖∞ denotes the !∞-norm on vectors (e.g. ‖a‖∞ =
maxi |ai|), and sign(ỹ) denotes a vector of marginal signs
of ỹ, i.e., its ith component is sign(ỹi). The sign function
is defined as sign(x) = −1, 1, 0, if x < 0, > 0,= 0, respec-
tively. We compute β̂R(λ) using the pathwise coordinatewise
descent algorithm [14, p. 306] or the iteratively re-weighted
LS algorithm [12] (IRWLS) as both algorithms permit using
an initial guess of iteration. A natural initial guess for com-
puting β̂R(λi) is the previously computed value β̂R(λi−1).
If the columns of xi are incoherent (i.e., having modest cor-
relations), then coordinatewise optimization approach often
provides the fastest computation. Similar results were also
reported in [14].

After computing a path of solutions over a grid, we select
the optimal value in the grid [λ] as the one minimizing BIC,

λ# = arg min
λ∈[λ]

2n ln σ̂(λ) + df(λ) · lnn,
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where the number of the degrees of freedom of the model,
df(λ) is defined as the number of nonzero elements in β̂(λ),
and σ̂(λ) denotes the scale estimate of the error terms. For
Rank-LASSO estimate, the natural scale statistics is Gini’s
mean difference of residuals, σ̂(λ) = 1

N

∑

i<j |êi(λ) −
êj(λ)|. The Rank-LASSO estimate based on BIC is then
β̂
#

R = β̂R(λ
#) and α̂#

R = α̂R(λ#).

3. FUSED RANK-LASSO

In order to enforce block-sparsity and smoothness, we intro-
duce a rank-based extension of the fused LASSO (FL) crite-
rion of [8]. This leads to a new penalized criterion:

min
β

∑

i<j

|ei − ej |+ λ‖β‖1 + λ2

p
∑

j=2

|βj − βj−1|,

where λ1,λ2 ≥ 0 form a pair of fixed regularization param-
eters. Note that again the optimization problem is convex
and hence a global solution β̂R(λ1,λ2), referred to as Rank-
FLASSO, can be computed efficiently. Note that if λ2 = 0,
then we obtain the Rank-LASSO solution presented in Sec-
tion 2. FL-penalty encourages flatness of the magnitudes as a
function of j and the local constancy of the coefficient profile.
Important practical applications of FL-penalization can found
in areas such as protein mass spectroscopy, microarray gene
expression [8] or in image denoising. We provide an example
in Section 4, illustrating the effectiveness of our method in
image denoising.

The benefit of our !1 criterion (in contrast to !2-criterion
used in [8]) is the flexibility of FL-penalty that can be incor-
porated into our Rank(LAD) framework with minimal pro-
gramming effort. Namely, let us define a (p − 1) × p matrix
Xf as Xf = (u2 − u1 · · · up − up−1)!, where ui’s de-
note basis vectors of Rp (having a 1 at its ith element and 0’s
elsewhere). Let the augmented fused measurements be

ỹfa =

(

ỹa

0

)

, X̃fa(λ1,λ2) =

(

X̃a(λ1)
λ2Xf

)

,

where 0 is a (p− 1)-vector of zeros. It can be easily verified
that β̂R(λ1,λ2) = argminβ ‖ỹfa − X̃fa(λ1,λ2)β‖1, i.e.,
Rank-FLASSO solves a standard LAD criterion based on the
augmented fused measurements.

4. NUMERICAL EXAMPLES

4.1. Prostate cancer data

We consider the benchmark prostate cancer data set (n =
97, p = 8) used in many text-books; see [15]. The interest
is in exploring a relationship between measurements on the
level of prostate-specific antigen with a number of clinical
measures in men who were about to receive a radical prostate-
ctomy. The predictor variables, denotedlcavol, lweight,

age, lbph, svi, lcp, gleason, pgg45, are explained
in [15].

The first column of Figure 1 shows the coefficient paths
of β̂(λ) as λ ranges from (0,λM ) for the LASSO, LAD-
LASSO and Rank-LASSO. We tested the effect of an outlier
by changing y1 to y∗1 = 10max(|yi|ni=1) and recomputing
the estimates. Thus, we have only a single (vertical) outlier
of moderate size in the data set. The second column of Fig-
ure 1 shows the coefficient paths when an outlier is present.
It is instructive to compare LAD-LASSO and Rank-LASSO
since both are based on !1 criterion. As can be seen LAD
approach yields coefficient paths that are non-monotone and
highly non-smooth with a visible zigzag feature. One can ob-
serve that in the outlier-free case (left plot), Rank coefficient
paths can be described as smoother and monotone versions of
LAD coefficient paths. However, when an outlier is present,
the LAD coefficient paths have changed more than Rank co-
efficient paths. Although both methods are robust, Rank is
more stable locally, i.e., a small change in λ does not imply
large effect on the solution. This example illustrates the in-
creased stability and robustness of Rank-LASSO compared
to LAD-LASSO.

The LSE and the LASSO solutions chosen by BICmethod
are shown below:

LSE LASSO Rank LAD
intercept .669 .355 1.191 .273
lcavol .587 .516 .568 .511
lweight .454 .345 .399 .492
age -.020 -.019 -.022
lbph .107 .050 .126 .123
svi .766 .566 .605 .760
lcp -.105 -.078 -.096
gleason .045 .119
pgg45 .005 .001 .006 .004

Note that both LASSO and Rank-LASSO select gleason
as a non-significant predictor, but the BIC solution for LAD-
LASSO is very conservative: the smallest value λ0 on the
grid (no shrinkage) was chosen as the optimal value. The BIC
may not work well with LAD-LASSO due to its non-smooth
coefficient paths: a very dense grid of penalty values should
be chosen in order to capture the rapidly changing differences
in solutions.

4.2. Image denoising example

Figure 2(a) shows a signal s of n = 400 measurements ob-
taining values {0, 1, 2, 3} in blocks of varying length and the
noisy signal y = s+n on top right panel. Note that the noise-
free signal s is sparse, 43.75% of the measurements are equal
to zero. The data sets are reshaped into 20 × 20 gray-value
images shown at the bottom plots. Then, given the knowledge
of the noisy signal/image alone, the objective is to find a good
approximation of the original noise-free signal/image. Due to
block-sparse nature of the signal, the FL-penalty can offer ef-
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Fig. 1. Coefficient paths for prostate cancer data without out-
lier (1st column) and with an outlier (2nd column).

ficient signal/image denoising. We computed the LASSO and
fused Rank-LASSO signal approximations given the knowl-
edge of noisy signal y and the prediction matrixX = In. The
best signal approximation obtained by the LASSO ŝ!2(λ) and
the fused Rank-LASSO ŝR(λ1,λ2) are shown at the bottom
panels of Figure 2. For both of the methods, we did an ex-
tensive grid search of penalty parameters λ and (λ1,λ2) and
the denoised images in Figure 2(c), (d) are the solutions that
had the smallest mean squared error (MSE) between the solu-
tion ŝ(λ) and the true noise-free signal s. The minimumMSE
was 0.0179 for Rank-FLASSO and 0.7013 for LASSO. This
drastic difference in denoising is due to the fact that fused
Rank-LASSO has successfully exploited the spatial smooth-
ness (block sparsity). As the result it provided significantly
better signal approximation than LASSO, as is well illustrated
in Figure 2.

4.3. Variable selection

In the simulation, the covariates xij , i = 1, . . . , n, j =
1, . . . , p are generated as i.i.d. normal random variates. We
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(a) noise free data s (b) observed noisy data y
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(c) LASSO ŝ(λ) (d) Rank-FLASSO ŝ(λ1,λ2)

Fig. 2. The signal s in (a) represents a vectorized gray-scale
image of squares; (b) signal s with added noise n. The de-
noised images shown in (c) and (d) are optimal solutions hav-
ing smallest MSE with the original signal over extensive grid
search of penalty parameters. Rank-FLASSO obtained much
better approximation (10× smaller MSE than LASSO).

set p = 15 and n = 75, or 200. The coefficient vector
β = (βi) is given by β1 = 1.5, β2 = 2.0, β3 = 2.5 and
βi = 0 for 4 ≤ βi ≤ p. The measurement vector y is gen-
erated according to the linear model (with intercept α = 0)
where the errors are from either the Gaussian distribution
N (0,σ2) or the Cauchy distributionCau(0,σ). In the former
case σ is the variance and in the latter case (as the variance
does not exist for Cauchy) the median absolute deviation
(MAD) σMAD = Med(|εi|). In both cases, we fix σ = 0.1,
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Method RMSPE CMS FPR FNR
n = 75 Oracle .100 1 0 0

LASSO .107 .32 .13 0
LAD-LASSO .110 .09 .26 0
Rank-LASSO .108 .29 .15 0

n = 200 Oracle .1004
LASSO .1030 .45 .08 0
LAD-LASSO .1038 .20 .16 0
Rank-LASSO .1031 .42 .09 0

n = 75 Oracle 0.099
LASSO 0.918 .34 0.10 0.13
LAD-LASSO 0.208 .56 0.05 0.01
Rank-LASSO 0.209 .64 0.04 0.01

n = 200 Oracle 0.100
LASSO 0.947 0.46 0.05 0.15
LAD-LASSO 0.109 0.80 0.02 0
Rank-LASSO 0.114 0.90 0.01 0

Table 1. Root mean squared prediction error (MSPE), the false
positive rate (FPR), the false negative rate (FNR) and percent-
age of correct model selection, averaged over 250 runs, for
Gaussian (top) and Cauchy (bottom) errors.

moderate signal to noise ratio (SNR) = 6 dB. We use BIC
also for LASSO and LAD-LASSO for which the natural scale
statistic σ̂(λ) is the sample standard deviation of the residu-
als, σ̂(λ) = ( 1n

∑

i êi(λ)
2)1/2, and the sample mean absolute

deviation σ̂(λ) = 1
n

∑

i |êi(λ)|, respectively.
We evaluate the estimators by their root mean squared pre-

diction error, RMSPE(β̂) = ( 1n
∑n

i=1(y
∗
i − (x∗

i )
!β̂)2)1/2 as

in [4], where an additional test data set (y∗,X∗) is generated
from the respective sampling schemes (without outliers) for
each MC trial. The RMSPE of the oracle estimator, which
uses the true coefficient vector β, is computed as a point of
reference for the evaluated methods. To assess the perfor-
mance of model selections, we examine the false positive
rate (FPR), the false negative rate (FNR) and the percent-
age of the correct model selection (CMS). (A false positive
indicates that the coefficient whose value is zero in the true
model is estimated to be non-zero.) In the Gaussian case, in
terms of RMSPE and CMS the LASSO gives only slightly
better performance than Rank-LASSO, but Rank-LASSO
has much better performance than LAD-LASSO. With the
Cauchy errors, the LASSO clearly gives the worst perfor-
mance, whereas the robust methods show similar results in
terms of root MSPE. Concerning the correct model selec-
tion, for n = 200, the Rank-LASSO had correctly identified
the true model 90 % time of the trials, which significantly
outperforms the LAD-LASSO (80 %).

5. CONCLUSIONS

We developed a novel robust LASSO (and fused LASSO) es-
timator based on Jaeckel’s rank dispersion function with ef-

ficient Wilcoxon scores. This method is robust and efficient
even under Gaussian errors. Simulation studies illustrate that
ourmethod offers excellentmodel selection performance both
in Gaussian and Cauchy errors. In regard to selecting the
correct model, it always outperformed the LAD-LASSO. An-
other advantage over LAD-LASSO is that it provides smooth
paths of th regression coefficients. This also supports the fact
why BIC model selection works well with Rank-LASSO but
not with LAD-LASSO.
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[14] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, “Path-
wise coordinate optimization,” Ann. Appl. Stat., vol. 1, no. 2,
pp. 302–332, 2007.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The elements of
statistical learning, Springer, New York, 2001.

23rd European Signal Processing Conference (EUSIPCO)

708


