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ABSTRACT

In this paper we suggest an improved algorithm for estima-

tion of parameters detailing Gaussian functions and expand it

to handle linear combinations of Gaussian functions. Compo-

nents in the signal are first detected in the spectrogram, which

is calculated using a Gaussian window function. Scaled re-

assignment is then performed using a set of candidate scaling

factors and the local Renyi entropy is used to measure the

concentration of each component using every candidate scal-

ing factor. Exploiting the fact that a Gaussian function may

be perfectly reassigned into one single point given the correct

scaling, one may identify the parameters detailing the Gaus-

sian function. We evaluate the algorithm on both simulated

and real data.

Index Terms— Reassigned spectrogram, Gaussian func-

tions, Parameter estimation

1. INTRODUCTION

Time-frequency distributions have long been a useful tool in

identification and classification of non-stationary signals. A

common method for estimation of the time-frequency content

of a signal is the spectrogram, where a time window is al-

lowed to slide over the signal and the spectral content is esti-

mated within each time-frame. The drawback of this method

is the resolution trade-off, i.e. a short time-window renders

good resolution in time, but bad resolution in frequency and

vice versa for a long time-window. One proposed solution

for this is the reassignment method, first proposed in [1] and

then reintroduced and analyzed thoroughly in [2]. There each

component, in a time-frequency or time-scale domain, is re-

assigned to its center of gravity. It has been shown to give per-

fect localization of the instantaneous frequency for impulses,

sinusoids and chirp signals. Further discussion on the topic

can be found in e.g. [3–5]. Often however, finding the ex-

act time frequency distribution of the process is not the main

goal, but rather a way to extract information about the sig-

nal. In [6] we present a version of the scaled reassignment,

introduced in [7]. If scaling is done correctly, perfect local-

ization of a Gaussian function is achieved. We also suggest

how this may be used to estimate the shape parameter of a
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Gaussian function, by fixing the scaling parameters and find-

ing the matched window function for the Gaussian signal. In

this paper we improve this estimation in terms of computa-

tional complexity. Further, we suggest an extension, which

makes the method viable if the signal consists of multiple,

well separated, Gaussian components.

In this paper all integrals are assumed to range from −∞
to ∞, unless stated otherwise. Real and imaginary parts will

be denoted ℜ and ℑ respectively and (·)∗ will denote conju-

gate transpose.

2. SIGNAL MODEL

We assume that the observed signal is comprised of a sum of

Gaussian functions

x(t) =

K
∑

k=1

αke
−

(t−tk)
2

2σ2
k eiωkt (1)

whereαk, tk, andωk denote amplitude, center time and center

frequency respectively, and σk is the shape parameter, which

we here consider the parameter of main interest. Further, we

assume that the components are separated in time and/or fre-

quency, meaning that no two components overlap each other

enough in the time-frequency representation, to affect the re-

assignment of the neighboring component.

3. THE SCALED REASSIGNED SPECTROGRAM

The short-time Fourier transform (STFT) of the signal x(t)
is calculated using some appropriate window function h(t) is

defined as

Fh
x (t, ω) =

∫

x(s)h∗(s− t)eiωsds (2)

which renders the spectrogram as

Sh
x (t, ω) =

∣

∣Fh
x (t, ω)

∣

∣

2
(3)

The reassignment of the spectrogram is defined, using the

two-dimensional Dirac delta function, as

RS(t, ω) =

∫∫

Sh
x(s, ξ)δ

(

t− t̂x(s, ξ), ω − ω̂x(s, ξ)
)

dsdξ.

(4)
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whereF th
x andF

dh/dt
x are the STFTs using t·h(t) and

dh(t)
dt as

window functions, respectively. In [2], it is shown that the re-

assignment functions in time and frequency, where each point

is reallocated to its center point of gravity, can be expressed

as

t̂x(t, ω) = t+ ctℜ
{

F th
x (t, ω)

Fh
x (t, ω)

}

(5)

ω̂x(t, ω) = ω − cωℑ
{

F
dh/dt
x (t, ω)

Fh
x (t, ω)

}

(6)

By setting ct = cω = 1 one gets the standard reassigned spec-

trogram, where chirps, sinusoids and impulses are perfectly

reassigned. The objective in this paper however is to find

scaling parameters such that a Gaussian function is perfectly

concentrated after the reassignment. This can be achieved

conditioned that a unit norm Gaussian window function with

parameter λ is used when calculating the STFT

h(t) =
1

π1/4
√
λ
e−

t2

2λ2 (7)

Additionally one needs the necessary STFTs from equa-

tion (5) and (6). Given that the observed is a single Gaussian

function xk(t), on the form of equation (1) with parameters

αk, tk, ωk and σk , the STFTs are found as

Fh
xk
(t, ω) = (8)

αk

√

2λσ2
k

√
π

λ2 + σ2
k

e
−

1
2

((

1

λ2+σ2
k

)

(t−tk)
2+

(

λ2σ2
k

λ2+σ2
k

)

(ω−ωk)
2

)

· e
−i

(ω−ωk)(σ2
k
t+λ2tk)

λ2+σ2
k

and

F th
xk
(t, ω) = − λ2

λ2 + σ2
k

(

t− tk + iσ2
k(ω − ωk)

)

Fh
xk
(t, ω)

(9)

and the last necessary STFT

F dh/dt
xk

(t, ω) = − 1

λ2
F th
xk
(t, ω) (10)

The spectrogram, for the single component, can then be cal-

culated as

Sh
xk
(t, ω) (11)

=
2α2

kλσ
2
k

√
π

λ2 + σ2
k

e
−

((

1

λ2+σ2
k

)

(t−tk)
2+

(

λ2σ2
k

λ2+σ2
k

)

(ω−ωk)
2

)

By defining the normalized reassignment vector as

rxk
(t, ω) =

t̂xk
(t, ω)− t

∆thct
+

ω̂xk
(t, ω)− ω

cω∆ωh
(12)

the reassignment of a Gaussian function using a Gaussian

smoothing window can be expressed on a compact form as

rhxk
(t, ω) =

√
2

λ

F th
xk
(t, ω)

Fh
xk
(t, ω)

(13)

Finally, applying the scaled reassignment method the spectro-

gram in equation (11)

RSh
x(t, ω) =

2α2
kσ

2
kλ

√
π

(λ2 + σ2
k)

∣

∣

∣
1− ctλ2

λ2+σ2
k

∣

∣

∣

∣

∣

∣
1− cωσ2

k

λ2+σ2
k

∣

∣

∣

e

−
(t−tk)2

(λ2+σ2
k
)

(

1−
ctλ

2

λ2+σ2
k

)2 +
(ω−ωk)2

(λ2+σ2
k
)

(

1−
cωσ2

k

λ2+σ2
k

)2

(14)

For more details of these calculations, see [6]. One may note

that perfect localization will be achieved for every (positive

valued) window parameters λ if the scaling parameters are

set to

ct =
λ2 + σ2

k

λ2
(15)

cω =
λ2 + σ2

k

σ2
k

(16)

Due to the linearity of the Fourier transform, the reassignment

vector for a composition of K components is found as

rhx(t, ω) =

K
∑

k=1

Fh
xk
(t, ω)

∑K
j=1 F

h
xj
(t, ω)

rxk
(t, ω) (17)

where Fh
xk
(t, ω) and rxk

(t, ω) are the STFT and the normal-

ized reassignment vector of the k:th component, respectively.

Since the components in this paper are assumed to be well

separated, at most only one Fh
xk
(t, ω) will locally have values

significantly different from zero. To give a good definition

of well separated is difficult as it depends on every parame-

ter detailing every neighboring component, as well as on the

choice of time-window parameter λ in equation (7). For ex-

ample, considering only two neighboring components, if the

masses of each component affects the reassigning of the other

component depends on λ, and the amplitude, center time, cen-

ter frequency and shape parameter of both components in an

intricate way.

4. PARAMETER ESTIMATION

In [6] we suggest an optimization scheme where the scale

parameters are fixed, and the window parameter lambda is

changed. The Renyi entropy [8], defined as

R
RSh

x
α =

1

α− 1
log2

∫∫

(

RSh
x (t, ω))

)α
dtdω, (18)

is then used to measure the concentration of the reassigned

spectrogram. As per the discussions in [8, 9], we henceforth
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Algorithm 1 Flow of Gaussian parameter estimation

1: Calculate the spectrogram using a Gaussian window with

shape parameter λ. Equation (2), (3), and (7)

2: Set a noise threshold and find peaks in the spectrogram.

3: Compute the scaled reassigned spectrograms using can-

didate ς
4: Calculate the LRE for each identified component.

5: Identify minima in LRE of every component.

choose α = 3. Given a single component setting, we show

that the function of the Renyi entropy over the space of win-

dow parameters is unimodal and hence suggest line search to

find the minimum. Here we suggest three changes to this pa-

rameter estimation method. First, we propose that we instead

fix the window parameter and optimize over the scale param-

eters. It then follows that one only has to calculate the STFT

once, and reassign the resulting spectrogram according to the

scale parameters instead of having to calculate both STFT and

reassignment for each window parameter.

Secondly we propose a change to the optimization method

of using line search. The line search method is computation-

ally efficient but is in this case sensitive to noise. When the

Gaussian functions are observed in a noisy environment, the

Renyi curve will no longer be unimodal and the line search

method may then converge to a local minimum. To solve

this problem, we suggest the more robust dictionary approach

where a grid of candidate parameters is set up and the Renyi

entropy of the scaled reassigned spectrogram is evaluated

over the whole grid of candidate scaling parameters. The

estimate is then taken as the grid point rendering the smallest

value. Given one estimate, one may set up a new, more finely

spaced, grid around this estimate and iterate the procedure.

Thirdly, as the observed signal possibly is multicompo-

nent, the Renyi entropy is multi-modal and is affected by

changes in all components in the entire spectrogram. To this

end we propose that components are first identified in the

spectrogram using peak detection. Further, we propose that

the local Renyi entropy (LRE) is used, defined as

R
RSh,ς

x
α (t0, ω0) =

1

α− 1
log2

∫ t0+Λt

t0−Λt

∫ ω0+Λω

ω0−Λω

(

RSh,ς
x (s, ξ))

)α
dsdξ (19)

where R
RSh,ς

x
α (t0, ω0) denotes the LRE around the point

(t0, ω0) of the reassigned spectrogram, calculated using can-

didate parameter ς . Further Λt and Λω are parameters deter-

mining the area where the LRE is calculated. We note that

the algorithm is insensitive to the choice of Λt and Λω as long

as the area contains the center time tk and center frequency

ωk for the component of interest and does not contain an-

other component. Hence they may be set using some crude

heuristic, e.g. using a priori knowledge of the resolution of

Fig. 1: The spectrogram showing the four components. The

detected component peaks are marked by stars.
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Fig. 2: The local Renyi entropy for the four components as

function of candidate parameters ς . The true parameter val-

ues for each of the four components are plotted as dashed

horizontal lines.

components or utilizing the minimum distance between all

found components. By denoting the candidate parameters as

ς , the candidate scaling parameters are set up as

ct(ς) =
λ2 + ς2

λ2
(20)

cω(ς) =
λ2 + ς2

ς2
(21)

which means that the Gaussian component with scale param-

eter σ will be perfectly reassigned to one single point when

ς = σ. It then follows that the LRE will have its minimum

in this point. For each identified component in the signal, the

shape parameter is estimated as

σ̂k = argmin
ς

R
RSh,ς

x
α (tk, ωk) (22)

In other words, reassign the entire spectrogram using the

candidate scaling parameters. Then calculate the LRE around

23rd European Signal Processing Conference (EUSIPCO)

995



0 10 20 30 40
−24

−22

−20

−18

−16

−14

−12

−10

−8
R

e
n

y
i 
e
n

tr
o

p
y

ς

Fig. 3: The local Renyi entropy for the four components, ob-

served with white noise, as function of candidate parameters

ς . The true parameter values for each of the four components

are plotted as dashed horizontal lines.
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Fig. 4: The mean RMSE of the four components as function

of SNR.

each component and identify the trough for each Renyi curve

and every candidate parameter. The parameter rendering the

lowest LRE is taken as the scale parameter estimate. The al-

gorithm is shown in Algorithm 1.

5. SIMULATIONS

We will show the performance of the algorithm by presenting

some simulated examples and end with a real-data case. In

all estimations below, the candidate parameters ς were set up

as an equidistant grid of points in the range [5,40] with 500

points.

We begin by showing the proposed method on a four com-

ponent signal with parameters shown in Table 1, when the

signal is observed noise free. The spectrogram of the sig-

nal, shown in Figure 1, is calculated using a time-window on

the form of equation (7) with λ = 20. The peaks identified

in the spectrogram are marked by stars. The LRE for each

of the four components are plotted in Figure 2 as functions

of candidate shape parameters ς , together with the true val-

ues marked as dashed lines. One can clearly see the troughs

lining up with the true parameter values. The estimated pa-

rameter values are σ̂ = (30.95 , 12.04, 7.79, 24.80), where

Fig. 5: The figure shows an example of how the Renyi curves

are shifted due to influence from neighboring components.

Note that as the two components approaches each other the

troughs in the local Renyi curves deviates more from the true

values.

the small errors are due to the resolution of both the spec-

trogram and the candidate parameters. We then apply the al-

gorithm to a realization of the same four component signal,

but this time observed with additive white noise. By defin-

ing the signal-to-noise ratio (SNR) for the k:th component as

the squared amplitude value of the component divided by the

noise variance, we set the SNR=20dB. In Figure 3, the local

Renyi curves are shown together with the true shape param-

eters plotted as dashed vertical lines. The estimated shape

parameters are σ̂ = (30.81, 12.34, 7.82, 24.01). This exper-

iment was repeated 250 times for different settings of the SNR

and the mean root-mean-squared error (RMSE), i.e. the mean

of the RMSE for the four components, are shown in Figure 4

as function of the SNR.

We go on by showing an example of how a neighboring

component may influence the parameter estimates. In Fig-

ure 5, we see two components where the left component is

successively moved closer to the right component. The left
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Fig. 6: The spectrogram of a recorded dolphins

echo-location click. The Identified peaks are plotted with

black stars.

comp. 1 2 3 4

tk -50 20 50 50

ωk/2π 0.2 0.3 0.4 0.1

σk 31 12 8 25

αk 1 1 1 1

Table 1: Parameter values of components in first example.

row in Figure 5 shows the spectrogram in each case and the

right column shows the calculated Renyi curves for the two

components. One may note that the closer the two compo-

nents are, the more biased the troughs are as compared to the

true values. Still, the bias is quite small, and still renders ren-

ders reasonable estimates.

Finally we show a real world example. Figure 6 depicts

the spectrogram of echo-location clicks made by a Risso’s

dolphin. The clicks are oscillating impulses, that may be well

modeled as Gaussian functions. The algorithm is applied to

the data which identifies four components and estimates the

parameters to (11.6, 11.08) for the two lower frequency terms

and (16.1. 15.1) for the two higher frequency components. In

Figure 7 the LRE are shown for the identified components.

6. CONCLUSIONS AND FUTURE WORK

In this paper we suggest an improved algorithm for estimat-

ing the parameters of oscillating Gaussian functions. This is

done by calculating the spectrogram using a Gaussian win-

dow function. Scaled reassignment is then performed using

a large set of candidate parameters, ς . Finally, the LRE is

computed for each component and the minima are identified.

The algorithm presented here will be more thoroughly

analyzed concerning how neighboring components influence

each other and the parameter estimation.
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Fig. 7: The figure the four LRE curves for the components

identified in the dolphin echo-location clicks.
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