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ABSTRACT
This paper studies sequential estimation of indoor localization
based on fingerprints of received signal strength indicators
(RSSI). Due to the lack of an analytic formula for the finger-
printing measurements, the Kalman filter can not be directly
applied. By introducing a hidden variable to represent the
unknown positioning coordinate, a state model is formulated
and a constrained Kalman filter (CKF) is then derived within
the Bayesian framework. The update of the state incorporates
the prior information of the motion model and the statistical
property of the hidden variable estimated from the RSSI mea-
surements. The positioning accuracy of the proposed CKF
method is evaluated in indoor field tests by a self-developed
Bluetooth fingerprint positioning system. The conducted field
tests demonstrate the effectiveness of the method in providing
an accurate indoor positioning solution.

Index Terms— Kalman filter, fingerprinting, receiver sig-
nal strength indicator (RSSI), Bayesian estimation

1. INTRODUCTION

In the last several years, interest in indoor positioning has
increased significantly because of various emerging applica-
tions. Due to the severe attenuation and scattering of radio
frequency signals in the indoor circumstances, Global Navi-
gation Satellite System (GNSS), as the most effective method
for outdoor navigation, is unable to provide the desired per-
formance or even unavailable indoors. One alternative for in-
door navigation is to utilize signals of opportunity (SoOP) [1],
which are not inherently intended for purposes other than nav-
igation.

Recently, with the increased use of the wireless local area
networks (WLAN) and Bluetooth technology, which offer the
flexibility and mobility to the users, received signal strength
indicators (RSSI) based fingerprinting has become a feasible
technique for indoor positioning [2]. Instead of depending on
accurate estimations of angle or distance to deduce the loca-
tion with standard geometry, the basic idea behind the finger-
printing method is to match elements in a database to particu-
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lar signal strength measurements in the area at hand [3]. The
method operates in two phases: (1) the training phase: a RSSI
radio map is created based on the reference points within the
area of interest. The radio map implicitly characterizes the
RSSI position relationship through the training measurements
at the reference points with known coordinates. (2) the online
positioning phase: the mobile device measures RSSI of the
wireless transmitters and the positioning system uses the radio
map to obtain a position estimate. A thorough summary and
analysis for different factors that affect fingerprints is given
in reference [4]. Different fingerprint positioning algorithms
are compared within WLAN in [5]. These methods are basi-
cally static fingerprint positioning methods, which only com-
pare the current RSSI measurements with the radio map to
estimate the position. The positioning accuracy can be fur-
ther improved by exploiting the measurements collected in
time series. In this work, we consider the sequential estima-
tion of indoor positioning with RSSI fingerprints. Due to the
implicit relation between the state variables and the finger-
printing measurements, the direct application of Kalman fil-
ter is impractical in use. By introducing a hidden variable to
represent the unknown position coordinates, a state model is
then formulated and a constrained Kalman filter (CKF) is then
derived within the Bayesian framework to recursively update
the state estimation, which incorporates the prior information
from the motion model and the statistical property estimated
from the RSSI fingerprints. The method is further validated
by a wireless localization scenario indoors using Bluetooth
RSSI fingerprints.

The rest of the work is organized as follows: the system
model and the problem of indoor positioning are formulated
in Section II. Section III derives the modified Kalman filter
for indoor fingerprint localization. The experimental tests and
performance comparison of three algorithms are presented
and discussed in Section IV. Section IV gives the conclusions.

2. SYSTEM DESCRIPTION

2.1. Motion model

Assume a mobile of interest moves on a two-dimensional
Cartesian plane. The state at time instant tk is defined as
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the vector xk = [xk, yk, ẋk, ẏk]
T
, where [xk, yk]

T corre-
sponds to the east and north coordinates of the mobile po-
sition; [ẋk, ẏk]

T are the corresponding velocities. The mobile
state with random acceleration can be modeled as [6, p. 267]:

xk+1 = Fkxk + wk, (1)

where the state transition matrix Fk =

[
I2 ∆tkI2

0 I2

]
,

with I2 the 2 × 2 matrix and ∆tk is the sampling period.
The random process wk is a white zero mean Gaussian

noise, with covariance Qk =

[
∆t4k

4 Ω
∆t3k

2 Ω
∆t3k

2 Ω ∆t2kΩ

]
where

Ω =

[
σ2
x 0

0 σ2
y

]
.

2.2. Measurements

This subsection presents the measurements utilized in the
training and the online positioning phases.

2.2.1. measurements to build a radio map (training phase)

In the training phase, the RSSI values of the radio signals
transmitted by the access points (APs) are collected in the
calibration points for a certain period of time and stored
into a radio map. Denote the ith fingerprint as RMRMRM i with
the form: RMRMRM i = (ci, {ai,j}) , j ∈ {1, · · · , N} where ci
is the coordinate of th ith calibration point and aij holds
the l RSSI samples from the access point APj , i.e. ai,j =
{a1
i,j , a

2
i,j , · · · , ali,j}, N is the total number of APs. The set

of all fingerprints is denoted asRMRMRM = {RMRMRM1, · · · ,RMRMRMM},
where M is the total number of calibration points.

2.2.2. measurements for position estimation (online phase)

In the positioning phase, denote zk,j as the RSSI values
measured from the jth AP at time epoch tk and zk =
[zk,1, · · · , zk,j ], j ∈ N . Then, the measurement sequence
to time k is z1:k , {z1, · · · , zk}.

2.3. Problem formulation

The problem of tracking the pedestrian indoors is to infer the
mobile state xk from the measurement sequence z1:k and the
constructed radio map R. Within the Bayesian estimation
framework, solving this problem corresponds to computing
the posterior p(xk|z1:k, R). By applying the Bayes’ Rule, the
posterior can be calculated as:

p(xk|z1:k, R) =
p(zk|xk, R)p(xk|z1:k−1, R)

p(zk|z1:k−1, R)

Due to the complex electromagnetic environment indoors, it
is not easy to give an explicit measurement function zk =

hk(xk) within the whole positioning area. Thus, the likeli-
hood p(zk|xk, R) could not be exactly calculated.

An alternative approximate is to compute p(zk|R), which
is based on the assumption that the whole area of interest
is divided into M small cells and the RSSI distribution on
the ith calibration point represents the distribution of all the
points within the corresponding cell. However, p(zk|R) is
the discrete probability distribution on the M coordinates of
calibration points, based on which the mean and covariance
of the position can be estimated, while p(xk|z1:k−1, R) pre-
dicts of the position and velocity. Therefore, the posterior
p(xk|z1:k, R) relates to fuse two state estimations with differ-
ent dimensions, which is not straightforward to update.

3. ALGORITHM DESCRIPTION

3.1. Bayesian static localization (BSL)

In fingerprinting localization, p(yk|zk) is a discrete p.d.f. on
the M coordinates of calibration points. According to the
Bayes’ rule,

p(yk = ci|zk) =
p(zk|yk = ci)p(yk = ci)∑M
i=1 p(zk|yk = ci)p(yk = ci)

(2)

For lack of the specific prior information on yk, we set a uni-
form prior to p(yk) and then the posterior p(yk|zk) in (2) is
equivalent to the likelihood p(zk|yk). By assuming that the
measurements zk from different APj are independent and a
Gaussian approximation to the histogram of ai,j , the likeli-
hood p(zk|yk) can be expressed as

lk,i = p(zk|yk = ci) =

N∏
j=1

p(zk,j |yk = ci) (3)

where

p(zk,j |yk = ci) =

{
N(zk,j ; āi,j , σ

2
i,j) if APj hearable

l0 if APj unhearable

Theoretically, l0 = 0, however, in practice, considering the
computation stability, it is set to a small value, e.g. 10−11.

Suppose the number of the reference points is large
enough, and a Gaussian p.d.f. can be approximated to the
posterior, i.e. p(yk|zk) ∼ N(µk,Σk), where the estimated
mean µk and the covariance Σk are

µk = ΣMi=1 l̄k,ici

Σk = ΣMi=1 l̄k,i(µk − ci)(µk − ci)T
(4)

where l̄k,i = lk,i/
(
ΣMi=1lk,i

)
.

3.2. Sequential Bayesian state estimation

The problem of tracking a pedestrian indoors is to infer the
mobile state xk from the measurement sequence z1:k. Within
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the Bayesian estimation framework, solving this problem cor-
responds to computing the posterior p(xk|z1:k). By applying
the Bayes’ Rule, the posterior can be calculated as:

p(xk|z1:k) ∝ p(zk|xk)p(xk|xk−1)p(xk−1|z1:k−1)

Due to the complex electromagnetic environment indoors, it
is not easy to give an explicit measurement function zk =
hk(xk) within the whole positioning area. Thus, the like-
lihood p(zk|xk) can not be exactly calculated and the basic
Kalman filter can not be directly applied.

Alternatively, in Section 3.1, by Bayesian estimation, the
posterior p.d.f. p(yk|zk) can be approximated to a Gaussian
distribution, where yk , [xk, yk]

T . Meanwhile, yk has the
explicitly linearized relationship with the state variable xk.
Therefore, the sequential estimation problem considered here
amounts to making inference to the posterior p(xk|z1:k) based
on the following state model

xk+1 = Fkxk + wk

yk = Hkxk + vk

yk|zk ∼ N(µk,Σk)

(5)

where H = [I2,0] and µk and Σk are the mean and covari-
ance of a Gaussian distribution.

Consider the sequential estimation of (5) within the
Bayesian framework. Given the measurements z1:k, the
posterior probability density function (p.d.f.) p(xk|z1:k) can
be calculated by integrating out y1:k, i.e.,

p(xk|z1:k) =

∫
p(xk|y1:k)p(y1:k|z1:k)dy1:k (6)

Decompose the posterior p(xk|y1:k) by Bayes rule:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

(7)

Since the statistical distribution of yk is only decided by the
current step of the observation zk, the posterior p(y1:k|z1:k)
can be decomposed as:

p(y1:k|z1:k) = p(yk|zk)p(y1:k−1|z1:k−1) (8)

Then, by substituting (7) and (8) into (6), we get

p(xk|z1:k) ∝
∫
p(yk|xk)p(xk|y1:k−1)·

p(yk|zk)p(y1:k−1|z1:k−1)dyk

(9)

For the linear Gaussian dynamic equation in (5), if at time
tk, p(xk−1|y1:k−1) conforms to a Gaussian distribution
N(x̂k−1,Pk−1), then the density of the one step predic-
tion p(xk|y1:k−1) is also Gaussian with the mean x̂k|k−1 and
variance Pk|k−1, where

x̂k|k−1 = Fk−1x̂k−1

Pk|k−1 = Fk−1Pk−1F
T
k−1 + Qk−1

(10)

and the likelihood

p(yk|xk) = N(yk; Hkxk,Rk)

then, (9) can be rewritten as

p(xk|z1:k)

∝
∫
c1e
− 1

2

(
‖yk−Hkxk‖2

R
−1
k

+‖xk−x̂k|k−1‖2
P
−1
k|k−1

+‖yk−µk‖2
Σ
−1
k

)
dyk

(11)

where ‖A−B‖C−1, (A−B)TC−1(A−B) and c1 is con-
stant.

By expanding and completing the square of xk and yk,
and applying the matrix inverse lemma in the exponent index
in (11), p(xk|z1:k) can be further simplified as

p(xk|z1:k) ∝
∫
c2e
− 1

2

(
‖yk−ŷk‖2

S
−1
k

+‖xk−x̂k‖2
P
−1
k

)
dyk

=c3e
− 1

2‖xk−x̂k‖2
P
−1
k

(12)

where c2 and c3 are constant and

x̂k = x̂k|k−1 + Gk(µk −Hkx̂k|k−1) (13a)
Pk = (I−GkHk)Pk|k−1 (13b)

Gk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk + Σk)−1 (13c)

Sk = Rk(Rk + Σk)−1Σk (13d)

ŷk = Sk(R−1
k Hkxk + Σ−1

k µk) (13e)

Thus, the posterior update of xk in (12) is conformed to a
Gaussian distribution with the mean x̂k (13a) and covariance
Pk (13b). It is noticed that the posterior update (13a-13c) is
similar with the basic Kalman filter [7]. However, the differ-
ence is that, x̂k (13a) is updated by utilizing the mean µk and
the Kalman gain Gk (13c) incorporates the covariance Σk.
It is because the explicit relation between the measurements
zk and the state xk is not available, the update of the xk can
only use the information from yk, i.e. {µk,Σk} estimated
in (4). The method is denoted as CKF and is summarized in
Algorithm 1.

Algorithm 1: CKF for indoor fingerprint localization

Input:
{
x̂k−1,Pk−1, zk

}
Output

{
x̂k,Pk

}
1. Predict mean x̂k|k−1 and covariance P̂k|k−1 according

to (10)
2. estimate mean µk and the covariance Σk according

to (3)(4)
3. update x̂k and Pk according to (13a)(13b)(13c)
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4. EXPERIMENTAL TESTS

4.1. Test Platform

In this study, a Bluetooth RSS data collecting system is devel-
oped for indoor positioning. The system consists of a Blue-
tooth evaluation kit and a data collecting software. The basic
function of the system is to scan the Bluetooth Access Points
(APs) nearby, collect the RSS from the detected APs, and then
send the measurements to the laptop via a serial port.

To evaluate the positioning accuracy of different algo-
rithms, a reference trajectory, used as the ground truth, is
obtained via NovAtel’s high-accuracy SPAN system. SPAN
technology can provide reliable, continuously available mea-
surements including position, velocity, and attitude even
through short periods of time when no GNSS satellites are
available.

Indoor tests were carried out in an office corridor with typ-
ical structures of concrete, steel and glass for office premises.
During the test, 13 Bluetooth access points are deployed in
the corridor area [9]. RSSI measurements were collected by a
self-developed Bluetooth data collecting system. A reference
trajectory, used as the ground truth, is obtained by a NovAtel’s
high-accuracy GPS/INS SPAN positioning system including
an HG1700 IMU (inertial measurement unit). The whole test-
ing platform is described in detail in [8].

4.2. Field Results

Two tests were carried out in the scenario. In both tests, a
tester walked along the corridors back and forth with the test
cart. Test 1 lasts about 6 minutes, while with a relatively
faster speed, test 2 only lasts 3 minutes. The sampling inter-
val of the Bluetooth is set as ∆t ≈ 9 s, which guarantees the
receiver has enough time to scan the surrounding APs. We
compare the proposed CKF with the BSL (Section 3.1) and
the point Kalman filter (PKF) [5]. The BSL method only uses
the current RSSIs to estimate the posterior mean and covari-
ance of the position (see (2)-(4)). The PKF further smooth
the mean of the position estimated by BSL with a Kalman fil-
ter, in which the mean of the position µk is used as the direct
observation of the mobile state xk and a stationary motion
model is applied to formulate the movement [5].

In our tests, the covariance of the process noise in the PKF
is set as QPKF = (Vmax ·∆t)2 · I2, where Vmax is the (empiri-
cal) maximum walking speed for indoor pedestrians and set to
2 m/s [9]. In the CKF, we set σx = σy = 1/∆t, which means
that the changes in the velocity are in the order of 1 m/s in
each direction within a sampling interval. The initial position
of the CKF and the PKF is obtained from the first output of
the BSL with the initial covariance set as 9 ∗ I2. The initial
velocity for the CKF is 0 m/s with covariance I2.

Fig. 1 and 3 represent the estimated trajectories of 3 dif-
ferent algorithms in a North-East coordinate frame including
also the SPAN reference track as the ground truth. Fig. 2 and

Fig. 1. Position estimation in Test 1

4 show the position error vs. time epoch of the three algo-
rithms. Position errors are compared in Table I.

It can be observed from the results that the mean error
of the BSL is about 5 m. The PKF smooths the positions
obtained by the BSL. Based on the prior motion model, the
estimation errors in PKF are reduced in several epochs, e.g.
k = 8, 10, 13 in Fig. 3 and k = 4, 5, 7, 9 in Fig. 5. How-
ever, the improvement of the PKF is minor, only 0.1 m. The
reason for this may lie in the fact that the QPKF is relatively
large due to the long sampling interval of the Bluetooth in-
quiring. Thus, the prior information from the motion model
has limited impact on the position estimation at each epoch.
In comparison, the positioning error of the CKF is 4.0 m on
the average, about 1 m improvement compared to BSL and
0.9 m compared to the PKF. Significant improvements can be
observed at k = 13 in test 1 and k = 4 to 10 in test 2, where
the large errors are detected and filtered out.

Thus, according to the test results, the proposed CKF ef-
fectively corrected the large outliers in position estimation
and achieves the best position accuracy among the three al-
gorithms. This is achieved by utilizing the statistical informa-
tion (both mean and covariance considered) from the indirect
observables and also with the prior information from the mo-
tion model. By comparison, the PKF only considers the mean
information of the mobile state, while the BSL did not take
the sequential measurements into accounts.

Table 1. Position Error Comparison
Stat. Test 1 Test 2

BSL PKF CKF BSL PKF CKF
mean (m) 5.0 4.9 4.1 5.2 5.1 4.0

std (m) 5.8 5.7 4.2 6.2 6.0 3.1
max (m) 27.2 26.5 21.3 22.6 21.8 11.3
95th (m) 12.7 12.9 8.5 18.5 18.3 8.9
min (m) 0.4 0.4 0.3 0.6 0.6 0.5
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Fig. 2. Position error vs. time epoch in Test 1

Fig. 3. Position estimation in Test2

5. CONCLUSIONS

This paper studied the sequential estimation of indoor posi-
tioning with RSSI fingerprints. The problem is formulated
within the Bayesian framework and a modified Kalman filter
is derived. The indoor field tests based on Bluetooth RSSI fin-
gerprint positioning show the effectiveness of the method in
providing a more accurate solution than the other two classic
methods.
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