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ABSTRACT

Non-negative HMM (N-HMM) [1] is a model that is well suited
for modeling a mixture of e.g. audio signals, but does not have
the ability to generalize to model unseen data. Non-negative du-
rational HMM (NdHMM) has recently been proposed [2] as a modi-
fication to N-HMM that can allow for generalization, and thus make
the approach suitable for automatic speech recognition. A detector-
based approach to speech recognition has been studied by several re-
searchers as an alternative to the traditional HMM approach. A bank
of phonetic feature detectors will produce phonetic feature posteri-
ors, which fit well with the non-negativity constraint of NdHMM.
We review the NdHMM approach proposed in [2] and propose to
extend this approach by combining NdHMM with a phonetic feature
detection front-end in a tandem-like system. Experimental results of
the proposed approach are presented.

Index Terms— ASR; Non-negative durational HMM; Phone
recognition; Phonetic feature detection

1. INTRODUCTION

Non-negative matrix factorisation (NMF) has been shown to be use-
ful in various disciplines. A key propery of NMF is the ability to
extract latent components from data, yielding a reduced rank ap-
proximation of the non-negative matrix as an additive combination
of the latent components.

Although this decomposition is inexact, the reduced rank ap-
proximation has been shown to be useful in many applications. In
[3], NMF has been successfully used to discover phone patterns by
representing each utterance in the database using weighted phone
lattice transition probabilities in the columns of V. Further, in [4],
convolutional NMF (cNMF) [5] was used to discover phone struc-
tures.

Probabilistic extensions for NMF allow the use of sophisticated
statistical techniques while still using the general ideas of NMF.
In [6], a probabilistic extension of NMF is presented for modeling
sound spectrograms. The columns of a spectrogram V are modeled
as histograms of “sound quanta”. The amount of sound quanta in a
given time-frequency bin is indicated by the Fourier magnitude of
that bin. After a normalization, the spectrogram can be considered
a joint probability distribution Pt(f) over time and frequency and is
represented as follows:

Pt(f) =
∑
z

P (f |z)Pt(z). (1)

∗Work performed while a PhD fellow at NTNU

This formulation states that a quantized version of the spectrogram
can be generated by performing multiple draws from the distribution
Pt(f). Each draw adds a sound energy quantum to the correspond-
ing time-frequency bin. The distribution, Pt(f), is defined as a lin-
ear combination of a set of time independent dictionary components
(P (f |z)) weighted with time dependent weights (Pt(z)) and are rep-
resented using multinomial distributions. Thus, each time frame of
the spectrogram is generated by performing multiple draws: first a
dictionary component, z, is selected according to Pt(z), then the
frequency to be assigned an additional energy quantum is chosen
according to P (f |z). The draws continue until the frame energy
matches the observed energy. The mixture weights of the model
therefore capture the temporal variation in the input signal. The for-
mulation in Equation (1) is also referred to as probabilistic latent
semantic analysis (pLSA) in the literature [7].

A major limitation in using the above formulation for modeling
speech is that the spectrogram is represented by a single set of dic-
tionary components, P (f |z). This limits the expressive power of the
model as the speech spectrum is non-stationary. In [8], [1] and [9] it
has been shown that HMMs can be combined with NMF to incorpo-
rate the non-stationary component as a Markov model which allows
changing the dictionary components with time. This model is called
non-negative HMM (N-HMM)

In the N-HMM, each state q has a fixed set of dictionary compo-
nents P (f |z, q) with time varying weights Pt(z|q). Thus N-HMM
is able to describe different parts of the input signal with different
states. For a speech signal the states may correspond to different
phones. In [8], it has been shown that the model can extract phone
structures.

Although N-HMM has been reported to be successful for sep-
arating mixture signals, such as music or speech and noise, it is
not suited for modeling components of a speech recognition system
(ASR). This is because the weights Pt(z|q) are dependent on the ab-
solute time t in the utterance, making the model unable to generalize
to unseen data. In this paper, we summarize a modified approach to
the N-HMM formulation, N-d HMM, for use in ASR set proposed in
[2], [10] where the idea is to use the same set of weights with every
visit to the state and force the variation on the weights to be depen-
dent on the duration for which the state is active instead of absolute
time.

In [2], the processing was based on a spectrogram or a modfied
MFCC representation as the input. An alternative to tradtitional ap-
proaches is to base the recognition process on a bottom-up detection
[11], [12] ). In this approach, we use a bank of detectors to find esti-
mates of the posterior probabilities of a set of phonetic features. We
propose to use the resulting posteriorgram as input to an NdHMM
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Algorithm 1 Generative process of NdHMM

Draw q1 from P (q1)
Set d1 = 0
for t = 1→ T do

Draw vt from P (vt|qt)
Draw zt from P (zt|qt, dt)
for v = 1→ vt do

Draw f from P (f |qt, zt)
xt[f ] = xt[f ] + 1

end for
Draw qt+1 from P (qt+1|qt)
if qt+1 = qt then

dt+1 = min(dt + 1, Dqt)
else

dt+1 = 0
end if

end for

recognizer in a tandem system [13] approach. We present details of
the approach, and experimental results using both the system in [2]
and the proposed tandem N-d HMM system for phone recognition.

2. NDHMM

The N-HMM combines NMF and HMM to allow the speech sig-
nal to be expressed with time varying dictionary components. The
N-HMM described in [8] is a hidden Markov model where the distri-
butions governing the observations generated by a state q are given
by Pt(f |q) =

∑
z P (f |q, z)Pt(z|q), i.e. a set of dictionary com-

ponents P (f |q, z) and a set of time dependent weights, Pt(z|q).
The observation vectors are generated from the model by performing
multiple draws from the underlying distribution and for each draw
adding an energy quantum to the corresponding time-frequency bin.
The number of draws, vt, for each state at time t is explicitly mod-
eled using a Gaussian distribution P (vt|qt), the energy distribution
of the state.

It is important to note that the weights Pt(z|q) are time depen-
dent. The variation of weights for each time frame captures the tem-
poral variations in the input signal although the dictionary compo-
nents are always time invariant, only conditioned on the state. How-
ever, this implies that the weights are utterance dependent, and the
model is not particularly useful for modeling unseen data. We cannot
remove the time dependency of the weights as they capture the tem-
poral dynamics. Further, having constant weights for all time frames,
will collapse the multinomial mixture models to a single multinomial
for each state and will result in a poor model.

In order to overcome the above problem, we propose to make
the weights dependent on the state occupancy duration, rather than
absolute time. Thus, the same set of weights are used every time the
state is visited. By denoting the current duration of the current state
qt as dt, the weight distribution for the state is time independent, but
conditioned on dt, i.e. Pt(z|q) → P (zt|qt, dt). This modification
does not impose any limit to the state occupancy duration, i.e. the
process may be in a specific state indefinitely long, consistent with
the Markov property of HMM.

Estimating P (zt|qt, dt) for an infinite number of durations is
impossible. To alleviate this problem, we introduce a threshold Dq

for the duration counter d. If the process has been in state q for
t ≥ Dq , we assume that the weight distribution does not change, i.e.
P (zt|qt, dt) = P (zt|qt, Dq) for t ≥ Dq . The proposed modifica-

tion removes the time dependency problem of the weights, making
the modified structure, which we refer to as Non-negative durational
HMM (NdHMM), suitable for speech recognition tasks.

In an effort to increase the discriminative capability of the
model, all the draws were restricted to be from one dictionary com-
ponent; i.e only one dictionary component is drawn for each time
frame, and the entire output vector is created using several draws
from that component. The generative process of the NdHMM for
creating the output sequence x̄ = {x1,x2, · · · ,xT } is given in
Algorithm 1.

2.1. Parameter Estimation

The complete set of parameters in the NdHMM are:

• The dictionaries: multinomial distributions: P (f |z, q)
• The weights: multinomial distributions P (z|q, d)

• Energy distributions: Gaussian distributions P (v|q)
• Transition probabilities: Markov model P (qt+1|qt)
• Initial state probabilities: P (q1)

As in standard HMM, the input vectors are assumed to be condition-
ally independent, and the transition probabilities are only dependent
on the current state.

To estimate the parameters of the NdHMM, we use a similar
approach to what is described in detail in [8]. The training procedure
uses the EM-algorithm for updating the parameters of the NdHMM,
similar to training of the conventional HMM.

The complete data log likelihood becomes:

logP (x̄, z̄, q̄, v̄) = logP (q1) +

T−1∑
t=1

logP (qt+1|qt)

+

T∑
t=1

logP (vt|qt) +

T∑
t=1

logP (zt|qt, dt)

+

T∑
t=1

logP (xt|zt, qt) (2)

where x̄, z̄, q̄ and v̄ denotes the sequence of feature vectors, dictio-
nary components, states and energy respectively. In order to estimate
a new set of distributions P̂ (·) based on the current estimates P (·),
the first step of the EM-algorithm in to estimate:

L = Ez̄,q̄|x̄,v̄{log P̂ (x̄, z̄, q̄, v̄)}

=
∑
q̄

∑
z̄

P (z̄, q̄|x̄, v̄) log P̂ (x̄, z̄, q̄, v̄) (3)

In the second step of the iteration, (3) is maximized with respect
to the new parameters. The resulting update formulae for the pa-
rameters are given in [2], where a more detailed description of the
derivation of the formulae is provided.

3. PHONETIC FEATURE DETECTION

An alternative to the standard approach to speech recognition, is to
base the recognition process on a bottom-up, detection based ap-
proach (see e.g. [11], [12] ). Our version of this approach is to de-
sign a front-end that consists of a bank of phonetic feature detectors.
The task of each feature detector is to estimate the posterior prob-
ability of a phonetic feature being active for a given speech frame.
The output of the bank of feature detectors are combined in a feature
vector, and subsequently used as input to the NdHMM based phone
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recognizer. Since the output of the bank of feature detectors is a set
of phonetic feature posteriors, using this as the feature vector will
satisfy the non-negativity requirement of NdHMM. In our approach,
we have used a binary phonetic feature set consisting of manner and
place features, augmented by Chomsky and Halle distinctive fea-
tures. The feature set has 22 phonetic features and is defined in [14].

Fig. 1: Detector bank (adapted from [12])

3.1. Detector training

We are building a bank of detectors, comprising individual detec-
tors for each target (phone or phonetic feature). Thus, each detector
needs to be trained individually. In principle, the feature vectors pre-
sented to each detector can be tailored to maximize the performance
of the individual detectors, as illustrated in figure 1. Here, we have
however used the same feature extractor for all detectors.

Each branch in the detector bank is implemented as shown in fig-
ure 2, which is the same basic detector structure as used in [12]. The
speech is analyzed by a 23 channel mel filterbank producing band
energy estimates from 25ms windows every 10 ms. Split temporal
context feature vectors [15] are then produced using a context win-
dow of 15 frames in forward and backward direction. This provides
information on the temporal evolution to the detection process. The
left and right context feature vectors are used for training two inde-
pendent ANNs to estimate phonetic feature posteriors. The output of
these two ANNs are subsequently used as input to a merger ANN,
that combines the information to produce the final feature posterior.

The artificial neural networks used in the detectors are all multi-
layer perceptrons (MLPs) with a single hidden layer of 500 nodes.

Left-Context

Right-Context

Merger

Pr(attribute)

f

t

L
/
2
L
/
2

Speech

Fig. 2: Phonetic feature detector architecture (adapted from [12])

4. EXPERIMENTS

We experimented with the proposed NdHMM model for a phone
recognition task using the TIMIT speech corpus [16]. The data is
divided into a test set (1344 utterances), a training set (3296 utter-
ances) and a development set (400 utterances).

The manual phonetic labeling is used for testing and for training
of the models, after appropriate mapping from the 61 phone set to
the 39 phone set [17].

Note that we did not use a language model (e.g. phone bigram)
in any of the systems investigated.

NdHMM requires the features to be non-negative. If we are
to use speech representations that do not satisfy this requirement,
such as mel-frequency cepstral coefficients (MFCCs) it will require
a transformation to make them non-negative. Using the spectrogram
as features is a good alternative as the values are non-negative and do
not require any transformation. The only drawback is that they have
high dimensionality, requiring a high number of parameters to be es-
timated, and thus more computer time for training. A transformation
that will produce non-negative features is the logistic sigmoid:

f(x;α, µx) =
1

1 + exp{−α(x− µx)} (4)

where f(µx) = 0.5 and α controls the slope. We have found that
with a proper choice of the slope factor, the sigmoid transformation
has only marginal influence on the recognition performance for con-
ventional HMMs, indicating that the transformation should not have
a severe adverse impact on the recognition rate in general.

NdHMM training is initialized by performing K-Means cluster-
ing on the data from each phone. The resulting cluster centroids are
then used as the initial dictionary components. The initial weights
are set constant with regard to the duration and their values reflect
the amount of data in each cluster. The duration threshold is set in-
dividually for each state to cover at least 90 % of the durations seen
in the training data.

4.1. MFCC features

13 MFCC’s including C0 were extracted using a 25 ms window with
10 ms shift and a 26 channel mel filterbank. In NdHMM, energy is
modeled as the sum of the components in the input vector. The fea-
ture vector presented to NdHMM excludes C0 and is transformed to
be non-negative by the sigmoid transformation. The C0 information
is preserved by scaling the transformed feature vector to sum to C0.

4.2. Filterbank parameters

Using filter bank energies has some inherent advantages, particu-
larly that the coefficients are non-negative so that no transformation
is necessary. Furthermore, the representation has a clear physical in-
terpretation. The filter bank analysis in our experiments calculated
log power channel estimates from a 26 channel mel filter bank using
a 25ms Hamming window shifted 10ms per analysis frame.

The NdHMM formulation assumes a multinomial distribution
which in turn implies that the input signal is integer. It turns out that
the performance of the system is quite sensitive to the dynamic range
of the input spectrogram. We applied a scaling to the input signal:

X′i = [γf ·Xi/Xmax] (5)

where Xmax is the largest spectrogram component in the utterance
from which Xi is extracted and [·] denotes rounding and γf is a
scaling constant chosen by experimentation (typically γf ≈ 125).

4.3. Acoustic feature posteriorgram parameters

An alternative to the spectrogram as a naturally non-negative speech
representation, is a posteriorgram. Such a representation can be con-
structed e.g. by using the output of the bank of phonetic feature
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detectors described in section 3. When the posteriorgram from the
phone detectors is generated using split temporal context features,
we also know that some dynamic information will be taken into con-
sideration when the posterior estimates are calculated.

A posteriorgram generated from the TIMIT sentence fadg0_si649,
"It suffers from a lack of unity of purpose and respect for heroic
leadership." is shown in Figure 3, where we have zoomed in on the
section "a lack of unity". The red lines in the plot show the ideal
phonetic feature activations.

Fig. 3: Posteriorgram of selected features from excerpt of sentence
fadg0_si649, "a lack of unity". Stylized activations generated from
the manual labeling are shown in red. The phonetic features are (top
to bottom): Fricative, Nasal, Low, Mid, Labial, Vowel.

As can be observed from Figure 3, the detectors will output
fairly smooth posterior estimates which in many cases do not reach
a steady activation level. This implies that there may be exploitable
information in the temporal evolution of the posterior estimates, and
that e.g. computing first and second order temporal derivatives may
give performance improvements.

The feature values of a posteriorgram lie between 0 and 1. Initial
experiments showed that this representation was not a good choice.
Using log values would give a better dynamic range, but would of
course necessitate handling negative values. After some experimen-
tation we chose to use the following input transform:

X′ = logX− log(Xmin)

X̂ = [(γp · (X′/X ′max)] + 1

where Xmin is the smallest value of the posteriorgram of an utter-
ance and X ′max is the largest value in the transformed log posteri-
orgram. [ · ] denotes rounding and γp is a scaling constant chosen
through experimentation (typically γp ≈ 100). The first step of the
feature transformation takes the log of the posteriorgram, and adds
a positive value to the resulting features to ensure that the result is
non-negative. The second step merely scales the features to be in the
range 1 ≤ X̂ ≤ (γp + 1)].

4.4. Results

We trained baseline HMM systems using 3-state context indepen-
dent phone models with 16 and 32 component GMM emission densi-
ties. The first system used 13 MFCC coefficients including C0. The

second system added first and second order derivatives to produce
a 39-dimensional feature vectors. The performance of the baseline
systems is given in the first four rows of Table 1.

NdHMM systems were then trained for various types of feature
vectors. All these systems had a dictionary size of 32.

The first system used 26 mel filter bank log energies as input,
and achieved an accuracy of 48.5%, which is comparable to the
HMM baseline with only static input features. A system based on
transformed MFCC parameters as described in 4.1 was also trained,
but had a performance inferior to the filterbank system.

We then trained a system using the output of the phonetic feature
detectors, transformed as described in section 4.3 as feature vectors.
The output of the individual detectors are the posterior estimates of
the target and the anti-target classes respectively. Although the es-
timates do not exactly sum to one, it turns out that we can reduce
the dimensionality of the feature vector from 44 (posteriors of both
target and anti-target) to 22 (target posteriors only) without loss of
performance. This system obtained an accuracy of 60.6% on the
TIMIT test set.

This is a huge improvement over using mel filterbank log ener-
gies as input. A possible interpretation could be that the posterior-
grams include some dynamic information due to the split temporal
context feature extraction which employs a 15 frame window in both
forward and backward direction. We thus trained a standard HMM
system using the posteriorgram as input. The system used mean and
variance normalization of the log posteriors. Using only static pos-
teriors, this system performed a little better than the baseline using
13 static MFCC coefficient feature vectors, and had a performance
of 51.5 % accuracy when using 32-component GMMs for the ob-
servation densities. Adding first and second order dynamic features
improved the performance further to 55.5% accuracy. This indicates
that even though the posteriorgram may contain some dynamic in-
formation, a significant part of the temporal information must still
be extracted by other means.

Standard HMM systems benefit greatly from including dynamic
information in the feature vector. We see from Table 1 that adding
dynamic features increases accuracy by around 15% absolute. Note
that all the results reported in the table are obtained without a phone
language model. Using a bigram phone model will typically result
in a performance improvement of 3.5-4% absolute. Although some
temporal information is inherent in the posteriorgram due to the split
temporal context feature extraction, we saw above that there is ad-
ditional temporal information in the posteriorgram that should be
possible to exploit. However, we need to make the derivatives non-
negative to use them with NdHMM. As an initial experiment, we
computed the first and second order derivatives from the standard
phonetic feature posteriorgram. The derivatives were then trans-
formed to non-negative values using the logistic sigmoid of Eq (4),
setting µx to the utterance mean for the respective derivatives. The
resulting system exhibits a 1.9% absolute accuracy improvement at
the cost of a parameter increase by a factor of 3.

The rightmost column of Table 1 shows the number of param-
eters per phone model for the different systems. The NdHMM sys-
tems do in general require less parameters than the HMM counter-
part, without significant loss of performance.

5. DISCUSSION

The performance of the tandem system is clearly dependent on the
performance of the phonetic feature detectors. Using the phonetic
feature posteriors as basis for frame level MAP classification, we
observed that the frame accuracies for the detectors were typically
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Table 1: Phone recognition performance on TIMIT test set. The
number affixed to the HMM system is the GMM size. NdHMMs
have dictionary size 32. Feature type PF means phonetic feature
posteriors. Context independent models, no language model.

System Feature Feature Accuracy #param’s/
type dim (%) phone

HMM-16 MFCC_0 13 48.2 1296
HMM-32 MFCC_0 13 49.3 2592
HMM-16 MFCC_0_D_A 39 62.6 3792
HMM-32 MFCC_0_D_A 39 64.9 7584
HMM-32 PF 22 51.5 4320
HMM-32 PF+∆ + ∆∆ 66 55.5 12768
NdHMM F-bank 26 48.5 1222
NdHMM PF 22 60.6 1034
NdHMM PF+∆ + ∆∆ 66 62.5 3102

around 90-95%. Note however that a chance classifier (always
choosing the alternative with the highest prior) gave 80-90% ac-
curacy for most features, and even non-informative priors would
produce 50% accuracy. Regarding the frame classification as an in-
formation retrieval problem, we saw that the detectors had F-scores
in the range 0.5- 0.95, i.e. a fairly wide range. Fortunately, the per-
formance for the most frequent features were (with exceptions for
"Tense", "Coronal" and "Back") in the high end. However, we are
confident that improving the detector performance will be important
for improving the overall system performance.

6. CONCLUSIONS

We have presented the principles of Nd-HMM and demonstrated that
this technique, when combined with the bottom-up approach of cre-
ating feature vectors based on phonetic feature posterior estimates,
can achieve a performance that is comparable to standard HMM on
a phone recognition task. Furthermore, this performance is achieved
with significantly fewer parameters than HMM, as indicated by the
last column of Table 1. The approach has promise, and we believe
that with better representation of the dynamic information the per-
formance can be further improved.
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