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ABSTRACT

Given the availability of EEG technology and existing studies, this

paper discusses the feasibility of development of mobile applications

controlled by brainwaves using a low-cost, non-invasive, headband

type of device that collects two-channel EEG signals at frontal lobe.

We have performed temporal, spectral and spatial analysis on EEG

signals collected during game-playing and found particular trends

of EEG signals at certain brain (mental) states for all subjects, and

some variations of the trends among different subjects. The analysis

results motivate us to design an adaptive thresholding mechanism

to find user-specific thresholds for a classifier that controls mobile

applications.

Index Terms— Brainwaves, Classification, Mobile application

1. INTRODUCTION

Analyzing electroencephalogram (EEG) signals is one of the promis-

ing approaches to understand physical, physiological, and psycho-

logical activities of human beings [1]. The recent bio-sensor tech-

nologies make it possible to develop low-cost, non-invasive, wireless

devices with dry-contact electrodes to capture EEG signals detected

at the scalp.

Typically, rhythmic activity of EEG signals is divided into five

main frequency bands such as delta (0.5-4 Hz), theta (4-7Hz), al-

pha (8-13Hz), beta (13-30Hz), and gamma (31Hz and up). Existing

studies [2] showed that the brainwaves with different frequencies

can be observed due to different brain (mental) states such as deep

sleep (delta), drowsiness (theta), relaxed awareness (alpha), attention

(beta), and fast activity binding (gamma).

In brainwave research, EEG recordings are mainly used to di-

agnose brain diseases such as Alzheimer’s disease. It has potential

to aid patients in their early diagnosis [3] by investigating the dif-

ference between normal signals and abnormal signals. EEG signals

are also applied to evaluate sleep quality [4], learning effect [5], and

attentional disorders [6]. Besides, motor imagery applications can

identify movement intentions, and differentiate right and left body

parts movements. Therefore, those applications can help people do

mental practice, and rehabilitate motor deficits [7, 8]. Preference

recognition applications, such as music [9, 10] and smell [11], are

potentially useful, since they can provide personalized recommen-

dations integrating current recommendation systems.

Most research work have been done with invasive, wired, multi-

channel devices with wet-gel electrodes. Rather, we try to show the

practicality of using a cheaper, non-invasive device with fewer chan-

nels. There are some tentative works with such portable devices,

e.g., negative/positive emotion tracking during game-playing [12]

and studies of attention and memory enhancement [13]. Utilizing

the knowledge from existing work, we develop mobile applications

controlled by brainwaves.

Given the availability of EEG technology and studies, this pa-

per discusses the feasibility of development of mobile applications

controlled by brainwaves using a low-cost, non-invasive, headband

type of device that collects EEG signals at frontal lobe. The spectral

and spatial analysis are performed on EEG signals collected during

game-playing. The analysis results motivate us to design an adaptive

thresholding mechanism to find user-specific thresholds for a classi-

fier that controls mobile applications.

Main contributions of the paper are as follows.

• We have investigated spectral and spatial features of EEG sig-

nals during game-playing and found a) particular trends of EEG

signals at certain brain (mental) states for all subjects, and b)

some variations of the trends among different subjects.

• Based on the finding a), we have developed mobile applications

controlled by brainwaves.

• According to the finding b), we have designed a user-specific

adaptive thresholding mechanism for a classifier.

The reminder of the paper is organized as follow. Section 2 de-

scribes our experiment method for data collection and feature ex-

traction. Section 3 presents data analytics results of the experiment.

Section 4 introduces feasibility and usability of EEG-based mobile

applications and controls, followed by conclusion.

2. DATA COLLECTION

2.1. Method

We use a wireless headband device named InteraXon MUSE [14]

for recording frontal lobe EEG, including 4 scalp electrodes and 2

reference electrode. According to the international 10-20 system,

the location for these 4 electrodes are FP1, FP2, TP9, TP10. All 4-

channel data were sampled at 3520Hz, and down sampled to 220Hz.

In this work, we use 2 channels FP1 and FP2.

We have collected EEG signals for playing a game, named

“Where is Wally?”. As illustrated in Figure 1-(a), a subject finds

and clicks “Wally” in a given picture on screen. 15 subjects (11

male and 4 female) are participated this experiment. Subjects are

asked to play 3 games (i.e., 3 different pictures) with no time limit

(Game 1), 60 seconds limit (Game 2) and 40 seconds limit (Game

3), respectively, in sequence with 20 seconds break between games

as described in Figure 1-(b). For Games 2 and 3, if subjects could

not find Wally within the time limits, then we ask them to play the

same game again until they find. During Game 3, subjects will hear

an alarm sound per sec for last 10 seconds while they will not here it
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Fig. 1. Instruction of Experiment.

in Game 2. Besides, we intentionally remove Wally from the picture

for Game 3. We let subjects play a few trials of Game 3 until they

want to quit.

We define a term called Period in Figure 1-(c). Each game has

3 (Game 1) or 4 (Games 2 and 3) periods such as “Before a game”

(Period 1), “During a game” (Period 2), “Last 10 seconds” (Period

3), “After a game” (Period 4). Thus, Game 1 does not have Period 3.

2.2. Feature Extraction

We consider EEG signals within a window of 1 second with 50%

of overlap-shifting. Thus, at every half second, we retrieve twelve

features of two types as follows:

• As spectral features, we apply a Hanning window function to

the windowed EEG signals followed by FFT to retrieve aver-

age log power Pb of frequency bands such as theta (4-7Hz), al-

pha (8-13Hz), beta (14-30Hz) and gamma (31-50Hz). Then, we

compute the log power ratio Rb defined by

Pb =

Fmax

b
∑

f=Fmin

b

Vf

Fmax
b − Fmin

b

(1)

Rb = Pb/
∑

∀b

Pb (2)

where Vf is the log power of the frequency f and b∈ {theta, alpha,
beta, gamma}.

• As spatial features, we compute asymmetry of average log

power of the aforementioned frequency bands by subtracting Pb

of FP1 (left) from Pb of FP2 (right) for all b.

3. DATA ANALYSIS

This section discusses the analysis results in terms of (i) EEG fea-

tures among different games, periods and trials (ii) cluster analysis,

(iii) subject similarity, and (iv) classification accuracy.

3.1. Feature analysis

3.1.1. Comparison of Periods

Figure 2 shows the percentiles of average log power ratio of four

bands over periods at FP1 for all subjects. Each row of the figures
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Fig. 3. Comparison of medians for Game 3 (FP1).

indicates Game, and each column indicates Period. Red line indi-

cates median value, and red plus sign indicates outlier. Here are

some remarkable observations in the figures.

• Medians and means of alpha in Periods 1 and 4 are higher than

those of beta/gamma while medians and means of alpha in Peri-

ods 2 and 3 become smaller than those of beta/gamma.

• Medians of theta/alpha decrease in Periods 2 and 3 and increase

again in Period 4. In contrast, medians of beta/gamma increase

in Periods 2 and 3 and decrease again in Period 4.

• Considering the log power ratio of frequency bands, we observe

the difference between game-playing periods (i.e., P2 and P3)

and non-game-playing periods (i.e., P1 and P4). Those trends

are clearly shown in Game 3 as summarized in Figure 3. It seems

that EEG signals are well-modulated between game-playing and

non-game-playing due to subjects being used to play games and

take a break.

Note that we have observed similar trends at FP2, whose figure

is omitted due to page limitation.

3.1.2. Comparison of Trials

Figure 4 shows the percentiles of log power ratio of four bands at

FP1 for all subjects. In this figure, each row indicates trial of Game3,

and each column does Period. As we expect, we have observed the

same trends over different trials as discussed in 3.1.1.

However, we have found the different trend in Beta and Gamma

asymmetry in different trials. Figure 5 shows Beta and Gamma

asymmetry of (i) the first trial of different Games and (ii) different

trials of Game 3 during Period 2. Red lines indicate median, and

blue circles indicate mean values.
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trials of different Games, and (ii) different trials of Game 3.

• In Figure 5(i), medians of both Beta and Gamma asymmetry

values increase at Game 2 and drop at Game 3. It seems that

subjects feel less focus due to familiarity with the game.

• In Figure 5(ii), median values keep increasing as subjects play

Game 3 more and more, especially for Gamma asymmetry. This

seems to contradict the above observation. We claim that this is

an indication of frustration.

• Variances of both Beta and Gamma asymmetry values increase

with trials. This might be an indication of subject-specific re-

sponse to the game-playing. That is, some subjects feel bored or

frustrated while the others still get excited to find Wally.

3.2. Cluster Analysis

Based on the observation above, we refine features into the follow-

ings: the sum of log power ratio of theta and alpha, the sum of log

power ratio of beta and gamma, beta asymmetry, and gamma asym-

metry; i.e., eight features.

Figure 6 plots cluster centroids of four Periods (for the first trial

of Game 3) in a subspace with three principal components. As you

see, game-playing period (P2 and P3) and non-game-playing period

(P1 and P4) are clearly differentiated. In this experiment, we could

not see significant difference between P2 and P3 by t-test, except

some subjects (e.g., Subjects 3, 10, 11). We understand that those

subjects played in a hurry and felt tense due to alarm sounds.
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Fig. 6. Plot of cluster centroids over different periods.

3.3. Subject Similarity

As we realized from the feature and cluster analysis, EEG signals are

subject-specific. In order to verify that, we compute self-similarity

and cross-similarity for each period as suggested in [15]. Here, the

self-similarity and cross-similarity are defined by an average dis-

tance of signals within a single subject and an average distance of

signals between different subjects, respectively, using standardized

Euclidean distance. The small value implies high similarity.

Table 1 shows that self-similarity is higher than cross-similarity

for all subjects. This result motivates us to design a user-specific

adaptive thresholding mechanism. It also shows us the feasibility of

subject identification.

Table 1. Subject self-similarity and cross-similarity

Period 2 Period 4

SID self cross self cross

1 3.858 3.964 3.809 4.169

2 3.707 4.069 3.757 4.478

3 3.549 6.762 3.766 5.788

4 3.679 4.601 3.739 4.651

5 3.827 4.577 3.807 4.748

6 3.768 4.219 3.743 4.296

7 3.846 4.486 3.805 4.568

8 3.580 4.469 3.724 4.388

9 3.858 3.928 3.806 4.864

10 3.735 5.831 3.660 5.199

11 3.837 5.536 3.757 5.684

12 3.734 4.300 3.818 4.589

13 3.794 4.465 3.589 5.312

14 3.767 4.118 3.759 4.517

15 3.785 4.554 3.832 5.048

3.4. Classification

This subsection compares the classification accuracy of four ap-

proaches using a common centroid for all subjects (CC), a user-

specific centroid (UC), a user-specific k-nearest-neighbor (kNN),

and a user-specific threshold with the minimum error rate (ME). As

training data, we take samples for 10 seconds of each period of the

first trial of Game 3, and we use samples from the second trial of

Game 3 as testing data.

CC: As a baseline classifier, we compute centroids of classes

(i.e. periods) from the training data of all subjects. Each testing data

is labeled by one of the classes, whose centroid is the closest to it.
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UC: The second classifier is similar to the first one except that

we compute centroids of classes from the training data of each sub-

ject. Thus, we classify testing data of each subject based on the

user-specific centroid.

kNN: With this classifier, each testing data is classified by a

majority class of its k-closest training data of each subject in terms

of standardized Euclidean distance. Note that we ignore to evaluate

kNN using training data of all subjects due to high time complexity.

ME: For this classifier, we compute threshold with the minimum

classification error as follows:

[Step 1]: For each class c, compute medoid ~mc from Nc training

samples for class c.

[Step 2]: For each class, compute standardized Euclidean dis-

tances between Nc samples and the corresponding medoid by

dkc = dist( ~skc , ~mc), k = 1, . . . , Nc where ~skc is the k-th sam-

ple of class c.

[Step 3]: Consider {dkc} as a set of tentative thresholds for class

c. Based on each of the thresholds, compute FPRk
c , the number of

false positive samples over the total number of samples of all classes

except class c, and TNRk
c , the number of true negative samples over

the total number of samples of class c.

[Step 4]: Compute error rates defined by

e
k
c = (FPR

k
c + TNR

k
c )/2 (3)

and generate an error rate set, ER= ∪∀c,∀k{ekc}.

[Step 5]: For each testing sample~t, compute distances from the sam-

ple to medoids, i.e., {dist(~t, ~mc)} for all classes.

[Step 6]: Select dkc as a threshold, whose corresponding error rate is

the smallest in ER.

[Step 7]: Check if dkc exceeds the corresponding dist(~t, ~mc). If it

is true, then label the testing sample as class c. Otherwise, select

another dkc with the next smallest error rate in ER and repeat Step 7.

We evaluate 4-class (4 periods) classification and 2-class (P2 and

P4) classification. Table 2 shows the 2-class classification accuracy

because we develop mobile applications based on the 2-class classi-

fier. As expected, the proposed ME classifier outperforms the other

approaches. Some subjects (e.g., Subject 2, 3, 8, 13, 15) show rel-

atively high accuracy of around 80%. Some studies claim that sub-

jects are intentionally able to relax through daily or repeated training.

Training subjects to improve the accuracy is left for the future work.

4. MOBILE APPLICATION

The previous section shows us the feasibility of building a classifier

based on user brainwaves. Utilizing the classification capability, we

try to control mobile applications. EEG signals are retrieved from

MUSE to a mobilephone via Bluetooth.

4.1. State Evaluation

In this paper, we focus on a 2-states classifier. At the beginning of

application use, a user is asked to go through a 1-minute training

session. As illustrated in Figure 7, the session includes 30 seconds

of game-playing and 30 seconds of relaxing. We expect that a user

stays an attention state (A) for the first 30 seconds, and a relaxation

state (R) for the later 30 seconds. From the session, we collect 120

samples (i.e., feature vectors), i.e., 60 from A state and 60 from R

Table 2. Classification Accuracy (%)

Common User k-NN Minimum

SID Centroid Centroid (k = 5) Error

1 67.80 69.46 70.37 74.64

2 71.41 75.14 77.28 77.28

3 67.52 76.97 79.12 82.41

4 65.52 65.97 67.24 71.21

5 64.63 68.52 70.12 72.14

6 70.33 72.99 73.68 75.31

7 55.13 65.92 66.71 68.97

8 77.11 77.27 78.64 78.64

9 72.91 72.50 74.51 75.10

10 57.96 60.67 61.33 65.45

11 60.52 65.03 67.15 72.42

12 65.44 74.99 75.23 77.74

13 70.51 77.37 77.37 81.37

14 67.00 74.73 75.82 77.45

15 73.15 76.27 78.37 78.93

Avg 67.13 71.59 72.86 75.27
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Fig. 7. A system flow for controlling mobile applications.

state. Based on these training samples, we build a ME classifier with

user-specific thresholds as explained in the previous section.

Then, we start collecting and classifying the real-time EEG

signals. In order to make up for the classification error, we uti-

lize a winner-take-all scheme to determine which state a user is

in. Also, this scheme can avoid possible fluctuation of classi-

fied states. For example, given the recent h real-time samples

~rt−h+1, ~rt−h+2, . . . ~rt, we obtain h state values ct−h+1, ct−h+2, . . . , ct
by a classifier. ct is a classified state of a sample ~rt, e.g., ct ∈
{1(A), 2(R)} The current user state St is computed as a weighted

majority among the state values, which is defined by

St =











1 if

t
∑

i=t−h+1

wi ∗ ci ≤
1 + 2

2
∗

t
∑

i=t−h+1

wi

2 otherwise

(4)

where wt−h+1 ≤ wt−h+2 ≤ . . . ≤ wt.

4.2. Example Applications

This subsection introduces three mobile applications that we develop

and a few other example applications.

• Toggle: A simple light-on/off is controlled by the current user

state St. Once a user enters one state from another state, a switch
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will be toggled. Other possible applications might be camera

shutter control, app start-up, etc.

• Continuous action: A sound volume is controlled by the dura-

tion a user stays in the same state. The volume keeps increas-

ing/decreasing as long as a user is in an attention/relaxation state

more than the pre-defined time. This type of control can be used

for the speed control of a car-racing game or the power control

in “Angry Bird”. For example, the power level can be increased

by focusing, and a bird can be released once a user enters a re-

laxation state.

• Pattern: A screen unlock application is constructed by register-

ing a user-specific pattern that is a set of state-duration pairs. For

example, a user stays in an attention state for 3 sec followed by

staying in a relaxation state for 2 sec. In this case, the user’s

pattern will be {(A, 3), (R, 2)}. Once the pattern is found, the

screen will be unlocked. As an alternative way, the pattern might

be generated by a user’s response to images. An application tries

to monitor brain states when a user looks at a particular set of im-

ages in a given image pool. For example, a user looks at images

of “friend”, “cake”, and “car” in order, and then attention, re-

laxation, and attention states are monitored, respectively. In this

case, the user’s pattern will be {(A, i1), (R, i2), (A, i3)}.

5. CONCLUSION

Given the availability of EEG technology, this paper discusses the

feasibility of development of mobile applications controlled by

brainwaves using a low-cost, non-invasive, headband type of device

that collects two-channel EEG signals at frontal lobe. We have

investigated spectral and spatial features of EEG signals during

game-playing and designed a user-specific adaptive thresholding

mechanism for a classifier. Using the proposed classifier, we have

developed a few mobile applications controlled by brainwaves to

verify the feasibility and practicality.
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