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ABSTRACT

This paper presents a method to estimate a linearly time-

varying delay between two continuous signals. The joint

estimation of the time delay and Doppler shift by analyzing

the cross-ambiguity function is state of the art, however, this

method has high computational demands as it relies on a bi-

variate search. It is shown that, by using previous estimation

results to initialize the analysis, a similar result can already

be obtained with a univariate search, as is then sufficient to

search for the variation of the delay since the last measure-

ment. Perfect tracking is obtained with proper initialization,

and for the case of incorrect initialization, convergence can

be guaranteed and even influenced with a tuning parameter.

A theoretical analysis and a numerical example illustrate the

performance of the proposed method.

Index Terms— time-varying delay estimation, Doppler

shift, wideband cross-ambiguity function.

1. INTRODUCTION

The estimation of the delay between two time-dependent sig-

nals is of high practical relevance. It is a key technique used,

for instance, in speed measurement applications, in time-of-

flight sensing systems, or in the analysis of some branches of

natural sciences.

The fundamental method for the delay estimation between

two time signals is the cross-correlation [1]. An analysis with

a correlation algorithm and a maximum search leads to a

reliable estimate of the delay, the result is quasi unaffected

by measurement noise or variations in the signal amplitude.

However, it is based on the three assumptions of constant

delay, stationary process, and long observation interval.

In the practice, a time-varying delay is a problem. Stan-

dard methods can only handle quasi-constant delays [2]. The

variation of the delay leads to a Doppler shift that affects the

frequency components of the delayed signal, creating a fre-

quency bias between both signals [3].

Fig. 1 illustrates the problem of time varying delays: In

the section where the delay is increasing, the frequency of

the delayed signal becomes lower. Also, the duration of the
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Fig. 1. A waveform subject to a non-constant delay.

considered waveform becomes longer. Therefore, a delay es-

timation has to take into account the Doppler shift to prevent

a mismatch in the cross-correlation.

Several techniques have already been proposed to de-

termine time-varying delays. The maximum-likelihood ap-

proach analyses the probability that a hypothetical delay d

caused the received signals. In [3], a parameter estimation

method is applied, although a constant delay is searched, it is

converging for time-varying delays. A design of the ’exact’

maximum-likelihood estimator for time-varying delays d(t)
exists [4], however, the solution of a set of difficult differential

equations is required. So far, due to a difficult implementation

and a higher noise sensitivity, only a handful of application-

specific implementations have been reported [5, 6].

The most widespread methods today are based on the

cross-ambiguity function (CAF: frequency shift) [7] or the

wideband cross-ambiguity function (WBCAF: time axis

scale) [8, 9]. The delayed signal is analyzed jointly for

two constant parameters, the delay and the Doppler shift.

Thereby, a linearly varying time delay is assumed. It can be

considered as an extension of the cross-correlation function.

Generally, both parameters are determined with a bivariate

(two-dimensional) search.

While the results are quite good and the method is suffi-

ciently simple to reach a wide number of practical applica-
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tions, the computational requirements are high. The reasons

are the two-dimensional full-enumeration search and the need

for multirate signal processing.

Later extensions with Wavelets [10] and with efficient nu-

merical searches [11] managed to reduce the computational

demands, however, also led to an increased implementation

complexity. In multi-path sensing, where the received sig-

nal is a sum of several delayed signals, more application-

specific solutions to the computational problem have been

proposed. The search was split into a two-step procedure un-

der the assumption of small frequency offsets [12], and an

a-priori known emitted waveform has been imposed [13].

In this paper, the WBCAF is analyzed based on a univari-

ate (one-dimensional) search. The application area is ”online”

delay estimation, where two waveforms are sequenced into

intervals and successively analyzed for their delay. Here, the

estimated delay of the previous interval can be used to initial-

ize the search. It is then sufficient to search for the variation

of the delay since the last measurement.

2. METHOD: UNIVARIATE WBCAF ANALYSIS

The observed data consists of two waveforms, the second be-

ing delayed,

r1(t) = s(t), t ∈ [0;T ], (1)

r2(t) = s(t− d(t)), t ∈ [0;T ]. (2)

The waveforms can be subject to additive (uncorrelated) noise

and may have a different magnitude, not modeled for concise-

ness. The analysis is performed sequentially on intervals of

length T . For a concise notation, the analysis is assumed to

start at t = 0. The delay is assumed positive d(t) ≥ 0.

2.1. Delay model and Doppler shift

The delay is modeled to account for the rate of change of the

delay d∆, via

d(t) = d0 + d∆t, t ∈ [0;T ]. (3)

As in previous works on the WBCAF, the time delay and the

Doppler shift are assumed as constant parameters [8, 9]. The

parameter d0 is the constant part of the delay and also the

starting point of the delay d(t = 0) = d0. With the additional

parameter d∆, the second waveform reads as

r2(t) = s(t− d0 − d∆t) (4)

= s((1− d∆)t− d0) (5)

= s(αt− d0). (6)

To simplify the notation, the parameter

α = 1− d∆, (7)

which represents the scaling of the time axis caused by the

Doppler shift, is introduced. A practical restriction is −d0

T
≤

d∆ < 1, as d(t) ≥ 0 and α > 0.

2.2. Interval section

For a constant delay d, the signals r1(t) and r2(t) are consid-

ered over a window t ∈ [0, T ] and t ∈ [d, T +d], respectively,

such that the waveform (referring to s(t)) is identical [2].

For a time-varying delay d(t), however, as indicated in

Fig. 1, the window duration and the spectrum of r2(t) are

affected. For an increasing delay, the delayed waveform is

uniformly stretched and the interval becomes longer.

The signal r1(t) is considered over [0;T ]. Following the

model (2), (3), the same waveform is found in r2(t) over the

interval
[

d0

α
; d0+T

α

]

.

The scaling of the time axis through the Doppler shift has

an influence on the sampling points. Consequently, multirate

signal processing is required for the analysis of r2(t) [11].

2.3. Cross-ambiguity function

For each possible delay d̂0 and delay variation rate d̂∆, the

Doppler-correction is applied to r2(t), the signal is resampled

and the interval selected. The probability of a given d̂0 and α̂

between r1(t) and r2(t) is obtained via the wideband cross-

ambiguity function

r1 ∗ r2(d̂0, α̂) =

∫ T

0

r1(τ)r2

(

τ + d̂0

α̂

)

dτ. (8)

A maximum search over the results should then lead to

the delay variation rate as defined in (3).

2.4. One-dimensional search and convergence

Assuming that the delay has already been determined for the

interval [−T ; 0] on r1(t), the initial value of d(t = 0) = d0
is already known from this previous measurement. By using

this knowledge, the only unknown in the delay (3) is the delay

variation rate d∆.

A theoretical study in section 3 will lead to more insight

to this idea. In the ideal case where the initialization of d0
is correct, the WBCAF (8) will lead to the correct results for

d∆ too. However, if the initial delay d0 has an offset to the

real value, which is possible due to noise, a low-resolution

search, or approximations in the multirate signal process-

ing, convergence may not be satisfactory. Therefore, the

one-dimensional search is not solely performed over d∆, but

instead, the initial delay d0 is also adjusted by

d̂0 = d̃0 + k · T · d̂∆. (9)

Here, d̂0 and d̂∆ denote the search parameters and d̃0 the ini-

tialization value. While this adaptation law leads to a small

error, it improves convergence in the presence of initializa-

tion errors. In the case of a constant delay, it has no influence

as d∆ = 0. The parameter k should be positive and within the

range

0 ≤ k ≤ 1. (10)

23rd European Signal Processing Conference (EUSIPCO)

1487



To initialize the search for the following interval, thus for

[T ; 2T ], the predicted delay d(T ) = d̂0 + d̂∆ · T will be ap-

plied, which includes the correction (9).

3. CONVERGENCE ANALYSIS

The analysis in this section shall further explain the principle

of the proposed delay estimation method, and demonstrate

its convergence. As notation, the values d0 and d∆ denote

the real values, d̂0 and d̂∆ denote the values assumed in the

search, and d̃0 denotes the initialization value.

Four cases can be separated:

case 1 d̂0 = d0 α = 1

case 2 d̂0 = d0 α 6= 1

case 3 d̂0 6= d0 α = 1

case 4 d̂0 6= d0 α 6= 1

As long as d̂0 = d0, meaning, if the initial value of the de-

lay is properly known, the reduction to a univariate search is

not a restriction. A two-dimensional search over the WBCAF

would have its maximum on the line d0 anyway. This is valid

if the delay did not change (case 1) as well as for a variation

since the previous interval (case 2).

However, the main question is the result for a non-

correctly assumed d0, as the interval of r2(t) will be sec-

tioned wrong. The following section therefore discusses the

cases 3 and 4.

During the implementation of various WBCAF algo-

rithms, it was found that, in general, the maximum of the

WBCAF is not just located in one point. Instead, in the

(d̂0, d̂∆) pane, a maximum appears that is distributed over

a line. This means that, if the error on d̂0 is not too high, a

clear maximum of the WBCAF can still be recognized in a

univariate search. This maximum will, however, be smaller

than the autocorrelation value of r1(t), and inherit an error on

d̂∆.

3.1. Analysis of the WBCAF

The shifted and time-scaled signal r2(t) in the WBCAF (8),

following (2), reads as

r2

(

τ + d̂0

α̂

)

= s
(α

α̂
τ + (

α

α̂
d̂0 − d0)

)

. (11)

To simplify the notation, the two parameters q = α
α̂

and p =
α
α̂
d̂0 − d0 are introduced. Further, the Fourier transform of

s(t) is denoted as S(ω) and Ŝ(ω) for t ∈ [0;T ] and for t ∈
[p; qT + p], respectively.

The WBCAF can be analyzed, analogously to the cross-

correlation theorem, in the Fourier-space:

r1 ∗ r2(d̂0, α̂)

=

∫ T

0

r1(τ)r2(
τ + d̂0

α̂
) dτ (12)

=

∫ T

0

s(τ)s(qt+ p) dτ (13)

=

T
∫

0





+∞
∫

−∞

S̄(ω)e+2πjωτdω



 ·





+∞
∫

−∞

Ŝ(ω′)e−2πjω′(qt+p)dω′



 dτ (14)

=

T
∫

0

+∞
∫∫

−∞

S̄(ω)Ŝ(ω′)e+2πj(ωτ−ω′qτ−ω′p)dω′dωdτ

(15)

=

+∞
∫∫

−∞

S̄(ω)Ŝ(ω′)e−2πjω′p·





T
∫

0

e+2πj(ωτ−ω′qτ)dτ



 dω′dω (16)

=

+∞
∫∫

−∞

S̄(ω)Ŝ(ω′)e−2πjω′pδ(qω′ − ω)dω′dω (17)

=

∫

∞

−∞

S̄(ω)Ŝ

(

ω

q

)

e−2πjω p

q dω. (18)

Some simlarity between S(ω) and Ŝ
(

ω
q

)

can be assumed.

In the interval [0;T ], the signal can be assumed as stationary,

i.e., its magnitude spectrum is not changing if the interval is

slightly shifted. The cross-correlation theorem can be com-

pleted to obtain

r1 ∗ r2(d̂0, α̂) = F{|S(ω)|2}

(

p

q

)

(19)

= F{|S(ω)|2}

(

d̂0 −
α̂

α
d0

)

. (20)

This result indicates that the maximum of the WBCAF is on

the line

d̂0 =
α̂

α
d0. (21)

This implies that, in any univariate search over the WBCAF,

the errors on d̂0 and α̂ are connected via d̂0

d0

= α̂
α

.
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3.2. Result with non-correct initialization d0

The initialization error on d0 is defined as as ǫ,

d̃0 = d0 + ǫ. (22)

With (21), the impact of limiting the search on one dimension

(by imposing d̂0 = d̃0) on the error of the Doppler scaling

follows as

α̂ = α+
α

d0
ǫ, (23)

and the delay variation rate as

d̂∆ = d∆ −
ǫ

d0
(1− d∆). (24)

This implies that, if the initial delay d̃0 is too high (ǫ > 0), the

estimated delay variation will be smaller than the real value

(d̂∆ < d∆). Consequently, the initialization error for the fol-

lowing measurement will become smaller. The opposite is

happening for a negative ǫ. This implies that the direct appli-

cation of the univariate search for α̂ is generally converging,

however, the result may not be satisfactory.

To improve this, the univariate search is not done along

d̂0 = d̃0, but along the line defined by (9). To analyze the

impact, the WBCAF maximum (21) and the search line (9)

are solved to find

α̂ =
α

d0
(d0 + ǫ+ k · T · d̂∆). (25)

The resulting delay variation rate d̂∆ is

d̂∆ =
d∆ − ǫ

d0

(1− d∆)

1 + kT
d0

(1− d∆)
. (26)

Compared to (24), the influence of a wrong initialization ǫ to

an error on the estimated delay variation rate d̂∆ will be af-

fected. Consequently, the initialization value for the follow-

ing measurement will be affected, such that convergence can

be properly adjusted.

In the practice, for k, a value of k = 0.2 has shown good

results. Small values have only a small influence, whereas

high values may lead to oscillations in the estimation results.

A proper tuning of k is a tradeoff between the handling of

the initialization error in a given application and the inherited

estimation error caused by (9).

4. NUMERICAL EXAMPLE

This constructed example, shown in Fig. 2, considers a con-

tinuously estimated delay subject to some time variation. This

is a typical problem, for instance, in industrial speed estima-

tion applications. A bat chirp serves as an example signal.

Although it is a strongly periodic signal, the frequency com-

ponents are varying with time. The signal can be considered

as non-stationary.
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Fig. 2. Top & middle: signals r1(t) and r2(t). Bottom: origi-

nal delay d(t).

The signal is analyzed in intervals of 0.2 ms successively.

Noise with a magnitude 0.01 (5% of the max. magnitude) is

added to the signals. In the bottom plot on Fig. 2, the original

delay trajectory d(t) is shown. It is constantly decreasing until

1.6 ms and then remains constant. The results of four different

methods are shown in Fig. 3.

In Fig. 3 (a), the results of cross-correlation as in [1] are

shown. Due to a frequency bias between both waveforms,

there is a considerable delay mismatch. During the constant

delay phase, the results become very reliable as the search

algorithm has few degrees of freedom.

In Fig. 3 (b), the results of the bivariate (two-dimensional)

WBCAF as in [8] are shown. The results are good for both

parameters d̂0 and d̂∆. The only disadvantage of this method

are the high computational demands.

In Fig. 3 (c), the results of the univariate WBCAF are

shown. The search is only done for d̂∆, assuming that the

initialization value of d̃0 is correct. The estimation of d̂0 has

a lag during the first phase, but converges during the constant

phase. The estimation of the delay variation rate d̂∆ is not

usable.

In Fig. 3 (d), the results of the univariate WBCAF with the

improved convergence with eq. (9) are shown. A parameter

k = 0.2 has been used. Here, the estimation of d̂0 is of the

same quality as with the bivariate WBCAF analysis. Again,

the estimation of d̂∆ is not usable, however, this value could

be derived from d̂0.

The noise sensitivity of the proposed method was found to

be slightly higher than for the bivariate WBCAF. High noise

results in a poor quality of d̂∆ and can lead to an estimation

instability when analyzing strongly periodic signals.
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(c) Univariate WBCAF analysis searching only for d̂∆
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Fig. 3. Results of the numerical example.

5. CONCLUSIONS

This paper presents a method to estimate a linearly time-

varying delay between two continuous signals. The joint

estimation of the time delay and Doppler shift with a cross-

ambiguity function is state of the art, however, this method

has high computational demands.

As a remedy, a univariate search has been proposed. It as-

sumes a sequential delay estimation, such that existing knowl-

edge is available for an initialization. With a correct initial-

ization and if the linear delay model fits, perfect tracking is

obtained. In any other case, reliable convergence is obtained.

The rate of convergence can be influenced with a tuning pa-

rameter, as was shown in theory as well as in a numerical

example.

Some limitations apply to the results as a consequence

of the univariate search. The compensation of initialization

errors is a tradeoff, leading to a lower precision of the results,

especially of the delay variation rate d∆.

Nevertheless, the estimated delay was found to have a

similar quality as with the 2D-WBCAF method. The com-

putational efficiency is good, and the implementation is not

more complicated than the widespread 2D-WBCAF methods.
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