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Abstract—Complex Wishart matrices represent a class of
random matrices exploited in a number of wireless communi-
cation problems. This paper analyzes the first and second order
statistical moments of complex Wishart matrices’ minors. This
enables to derive new closed-form approximations for the outage
capacity of multiple input multiple output (MIMO) systems
operating in Rayleigh fading channels at any signal-to-noise ratio
(SNR) regime and with any number of inputs and outputs. The
derived expressions are compared with bounds known in the
literature as well as with simulations. Results show the tightness
of the proposed approximations to simulations for a broad range
of MIMO settings.

Index Terms—MIMO systems, outage capacity, Wishart ma-
trix, fading channels, statistical characterization.

I. INTRODUCTION
Recently, random matrix theory involving complex Wishart

matrices has attracted the interest of researchers in wireless
communications for their suitability to model the behavior of
wireless systems [1]. Relevant applications of random matrix
theory include MIMO and massive MIMO systems [2]–[4],
which are key technologies for elevating the spectral efficiency
in future wireless communications. The design of such systems
require the characterization of the outage capacity. Although
this subject has received a lot of interest in the last two
decades, the derivation of a closed-form expression of the
outage capacity serving for the design of MIMO systems in
nonasymptotic regimes is still an open problem.
MIMO systems have been largely studied in the literature

for high spectral efficiency communications [5]–[7]. Expres-
sions for the maximum information rate and outage probability
were derived in [8]. The capacity of MIMO systems was
obtained in [9], [10] using an approach based on moment
generating function. The ergodic capacity of Ricean-fading
MIMO channels with rank – 1 mean matrices was determined
in [11] under the assumption that the channel is unknown at the
transmitter and perfectly known at the receiver. Other typical
approaches in the literature for evaluating the outage capacity
of MIMO systems consist in determining the eigenvalues of
a Wishart matrix [12] or in considering asymptotic regimes
on the SNR and on the number of inputs and outputs [1],
[13]. While the former approaches might result in cumbersome
expressions; the latter might result in inaccurate expressions
for cases of interest where a MIMO system employs a limited
number of antennas and operate at moderate SNR.
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This paper proposes a different approach for evaluating the
outage capacity of MIMO systems based on moments of the
Wishart matrix minors. The proposed approach requires the
extension of some theorems on minors of a real Wishart ma-
trices to those of complex Wishart matrices, and the derivation
of their expectation. This enables us to derive closed-form
approximations for the outage capacity for any number of
antennas and SNR values in Rayleigh fading channels. The
resulting expression is compared with bounds known in the
literature and with Monte Carlo simulations.

II. SYSTEM MODEL

Consider a MIMO system composed of nT transmitting
antennas and nR receiving antennas operating in a wireless
channel described by a matrix H which is an nR×nT matrix.
The elements of H are independent, identically distributed
(IID) random variables (RVs) following a zero-mean complex
Gaussian distribution (i.e., Rayleigh fading channel for each
transmit-receive antenna pair). Let n = min{nT, nR} and
m = max{nT, nR} .
In an absence of channel state information at the transmitter

side, the instantaneous Shannon capacity is given by [7]

C(D) = log2 D (1)

where

D = det

(

In +
ρ

nT
W

)

(2)

in which In is the n × n identity matrix, ρ is the SNR per
receiving antenna element averaged over small-scale fading,
and

W =

{

HH
† for nR ≤ nT

H
†
H for nT ≤ nR

(3)

is an n×n complex Wishart matrix withm degrees of freedom
and covariance In, and with n eigenvalues that are elements of
the column vector λ i.e. λT = [λ1,λ2, . . . ,λn] .1 Therefore,
the instantaneous Shannon capacity (1) results in

C =
n
∑

i=1

log2

(

1 +
ρ

nT
λi

)

.

To characterize the statistics of the instantaneous capacity
C, which depends on the randomness of the channels through
the determinant D, or the eigenvalues λ, the ergodic capacity

µC = E {C(D)} (4)

1Notations † and T indicate transpose-conjugate and transpose operations,
respectively.

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 983



and the outage capacity C⋆ for a given target outage proba-
bility

Pout = P {C(D) ≤ C⋆} (5)

can be determined.2

III. ERGODIC AND OUTAGE CAPACITY APPROXIMATIONS

A tractable approximation for the outage capacity is ob-
tained by considering the instantaneous capacity as a Gaussian
distributed RV [14] with mean µC and variance σ2

C . Thus,
from (5) we have

C⋆ ≃ µC − Inverfc(2Pout)
√

2σ2
C (6)

where Inverfc(·) is the inverse complementary error function.
Instead of determining µC and σ2

C from the statistics of λ,
consider an alternative approach based on the Taylor expansion
of the instantaneous capacity C(D) around µD = E {D}. This
results in

C(D) = Ck(D) +Rk(D)

Ck(D) = log2 µD +
k

∑

i=1

(D − µD)i

i!

di

dDi
log2 D|µD

= log2 µD + log2 e
k

∑

i=1

(−1)i−1(D − µD)i

i µi
D

. (7)

Here, Ck(D) is the Taylor polynomial of order k approximat-
ing C(D) and Rk(D) is the corresponding residual, which
can be written as

Rk(D) = log2 e
(−1)k(D − µD)k+1

k ξk+1
D

(8)

where ξD is a number between µD and D. Therefore, C(D)
can be approximated by Ck(D) when the residual Rk(D) is
negligible. Unfortunately, |Rk(D)| converges to 0 for k large
only when D < 2µD (note from (2) that D ≥ 1), whereas it
diverges when D > 2µD. Hence, such an approximation has
to be handled carefully, since D is a random variable taking
values in [1,∞). It is expected that the convergent behavior
will be dominant when the values of D are mainly distributed
around µD, i.e., when σ2

D = E
{

(D − µD)2
}

is much smaller
than µD . Note also that Rk(D) is negative when k is odd,
whereas it is positive only when k is even and D > µD .
We can use the approximated instantaneous capacity to

evaluate the mean µC and the variance σ2
C as: µC,k =

E {Ck(D)} and σ2
C,k = E

{

(Ck(D)− µC,k)2
}

. The simplest
approximations are those depending on µD and σ2

D only, i.e.

µC,1 = log2 µD ≥ µC (9)

µC,2 = log2 µD −
log2 e

2

σ2
D

µ2
D

(10)

σ2
C,1 = (log2 e)

2 σ
2
D

µ2
D

. (11)

2Notations E {·} and P {·} denote the statistical expectation and the
probability of the argument, respectively.

We also consider the following approximation3

σ̃2
C,2 = E

{

(C1(D)− µC,2)
2
}

= (log2 e)
2 σ

2
D

µ2
D

−
1

4
(log2 e)

2 σ
4
D

µ4
D

. (12)

Note that µC,2, σ2
C,1, and σ̃2

C,2 depend on log2 µD and σ2

D

µ2

D

.
Hereafter, we determine the exact first and second moments

of D, which will enable us to obtain closed form approxima-
tions of µC and σ2

C . By applying the expansion presented in
[16] and exploited in [8] to the determinantD in (2), we obtain

D = 1 +
n
∑

i=1

(

ρ

nT

)i
∑

αi⊆{1,2,...,n}
|αi|=i

Dαi
(13)

whereDαi
= det(W αi

) andW αi
is an i×i matrix composed

of the elements of W that are in the rows and the columns
with indexes in the set αi ⊆ {1, 2, . . . , n} with cardinality
|αi| . Averaging the determinant and the squared determinant
of W αi

over Rayleigh fading gives [8], [17]

E {Dαi
} =

m!

(m− i)!
(14)

E
{

D2
αi

}

=
m!(m+ 1)!

(m− i)!(m− i+ 1)!
. (15)

From (13) and (14), we have

µD = 1 +
n
∑

i=1

(

ρ

nT

)i(n

i

)

m!

(m− i)!

= 1 +
n
∑

i=1

(

ρ

nT

)i nR!nT!

i! (nR − i)! (nT − i)!
. (16)

To derive the variance σ2
D , we first express it as

σ2
D =

n
∑

i=1

n
∑

j=1

(

ρ

nT

)i+j
∑

αi

∑

βj

(

E
{

Dαi
Dβj

}

−E {Dαi
}E

{

Dβj

})

(17)

where αi and βj are index sets both ⊆ {1, 2, . . . , n} with
cardinality i and j, respectively. The expectation E

{

Dαi
Dβj

}

in (17) is obtained in the following Lemma.
Lemma 1: Let W be an n × n complex Wishart matrix

with m degrees of freedom, and let αi and βj be index sets
both ⊆ {1, 2, . . . , n} with cardinality i and j, respectively. The
expectation E

{

Dαi
Dβj

}

is given by

E
{

Dαi
Dβj

}

= E
{

det(W αi
) det(W βj

)
}

(18)

= E
{

det(W γk)
2
}

E

{

det(W̆ αi\γk)
}

E

{

det(W̆ βj\γk)
}

where index set γk ! αi ∩ βj with cardinality |γk| = k, and
W̆ is a (n−k)× (n−k) complex Wishart matrix with m−k
degrees of freedom.

Proof: For conciseness we only provide a sketch of the
proof. In particular, we follow the method for evaluating the
moments of minors for a real Wishart matrix presented in [18]

3In [15], an approximation of this form for the outage capacity of orthogonal
space-time block codes was given as a function of the power covariance matrix
of the channel.
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Fig. 1. Example of 8× 8 matrix W and its partitions with αi = {1, 3, 7}
and βj = {2, 3, 5, 7}: (a) elements of Wαi ; (b) elements of W βj

; and (c)
elements of W γk .

Lemma 4.7 and [17] Theorem 3.2.10. Their proofs have been
extended to complex Wishart matrices.
An example of an 8 × 8 matrix W and its partitions with
αi = {1, 3, 7}, βj = {2, 3, 5, 7}, and γk is given in Fig. 1.
Corollary 1: For Rayleigh fading channels the expectation

E
{

Dαi
Dβj

}

results in

E
{

Dαi
Dβj

}

=
m+ 1

m− k + 1
µD(αi)µD(βj) (19)

where µD(αi) ! E {Dαi
} and µD(βj) ! E

{

Dβj

}

.
Proof: From (14) and (15), the terms in (18) averaged

over Rayleigh fading can be expressed as

E
{

det(W γk)
2
}

=
m!(m+ 1)!

(m− k)!(m− k + 1)!
(20)

E

{

det(W̆ αi\γk)
}

=
(m− k)!

(m− i)!
(21)

E

{

det(W̆ βj\γk)
}

=
(m− k)!

(m− j)!
. (22)

After some mathematical manipulations, E
{

Dαi
Dβj

}

in (18)
can be written for Rayleigh fading channels as (19).
The results above, together with the counting of the number

of partitions αi and βj that have an overlapping set with car-
dinality k, enable us to express the variance of the determinant
D of W as

σ2
D =

n
∑

i=1

n
∑

j=1

(

ρ

nT

)i+j (n

i

)

(23)

min{i,j}
∑

k=max{0,i+j−n}

k

m− k + 1

(

n− i

j − k

)(

i

k

)

µD(αi)µD(βj) .

Since
(

n

i

)(

n− i

j − k

)(

i

k

)

=
n!

k!(i− k)!(j − k)!(n− i− j + k)!

the (23) becomes

σ2
D =

n
∑

i=1

n
∑

j=1

(

ρ

nT

)i+j

ci,j µD(αi)µD(βj) (24)
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Fig. 2. σ2

D/µ2

D as function of the SNR for different MIMO configurations.

where

ci,j !

min{i,j}
∑

k=max{0,i+j−n}

k

m− k + 1

(n− i− j + k + 1) . . . (n− 1)n

k!(i− k)!(j − k)!
.

(25)

By using (16) and (24) in (9)–(12) we obtain the closed-form
approximations of the ergodic and outage capacity of MIMO
systems operating in Rayleigh fading for various settings.
Fig. 2 shows σ2

D/µ2
D as function of the SNR ρ for different

MIMO settings. It can be appreciated the accuracy of (16) and
(24) with respect to simulations. We can see that σ2

D/µ2
D tends

to zero for ρ approaching to zero and achieves its maximum
constant value when ρ approaches infinity. As already pointed
out, when σ2

D/µ2
D is small, the approximations (9) and (12)

are expected to be tight to simulations. Results of this kind
can be used to identify for which sets of system parameters
the approximations are reliable. The most critical region for
the approximations is for high SNR when the MIMO is almost
squared (nR = nT). This is confirmed by observing, from (16)
and (24), that σ2

D/µ2
D approaches n/(m− n+ 1) for large

ρ and approaches nmρ2/n2
T for small ρ. Note that σ2

D/µ2
D

is small when ρ is tending to 0, or for any ρ when m is
sufficiently large with respect to n, e.g. for the 8x2 and 2x8
MIMO settings in the figure.

IV. OTHER KNOWN BOUNDS

The upper bound µ(1)
C = log2 µD ≥ µC was already

considered in [11], which also proposed a simple lower-bound
for ergodic capacity in MIMO channels. This lower bound
was derived by extending the asymptotic expression of µC for
large SNR obtained in [8], which is given for Rayleigh fading
channels by

µC,L =
n
∑

j=1

log2

(

1 +
ρ

nT
eψ(m−j+1)

)

(26)

where ψ(i) =
∑i−1

p=1

(

1
p − γ

)

and γ is the Euler number.
An upper bound for the variance of C(D) is obtained by

considering the asymptotic expression of σ2
C for large SNR as
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(a) 4x4 MIMO
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(b) 4x6 MIMO

Fig. 3. Ergodic capacity, µC , as function of SNR for a 4x6 MIMO system. AP1 refers to µC,1, AP2 refers to µC,2, LB refers to µC,L.

derived in [8], given by

σ2
C,U = (log2 e)

2
n−1
∑

j=0

ψ̇(m− j) (27)

where ψ̇(i) = ψ̇(i− 1)− (i − 1)−2 and ψ̇(1) = π2/6 .
Remark: It is worth noting that asymptotic bounds can

also be exploited to refine the approximations of µC and σ2
C

introduced in the previous Section, as follows:

µ̃C,2 = max

{

log2 µD −
log2 e

2

σ2
D

µ2
D

, µC,L

}

(28)

σ̃2
C,1 = min

{

(log2 e)
2 σ

2
D

µ2
D

,σ2
C,U

}

. (29)

V. RESULTS

In this Section we present results that illustrate the accuracy
of the closed-form approximated evaluation of µC , σ2

C and
outage capacity C⋆ compared with simulation and known
bounds. We plot these parameters as function of SNR, by
considering two different MIMO configurations. The first
setting refers to a 4x4 MIMO system representing the case
where nR = nT, which is expected to be the most critical
case for large SNR. The second setting refers to a 4x6 MIMO
system representing a case where m−n is a sufficiently large
fraction of n, which is expected to lead to tight approximation.
We observe from Figures 3, 4, and 5 that the approximations

are asymptotically tight for small SNRs. From the Figures
3(b), 4(b), and 5(b) we also note that first and second order
approximations of µC and σ2

C still work well, even for large
SNRs. Figures 3(a), 4(a), and 5(a) highlight the limitations of
the proposed approximations. We can see that at large SNRs
when m = n the values of σ̃2

C,2 loose accuracy, and in general
the second order approximations do not improve the first order
ones. On the other hand, in this SNR region the upper bound
for σ2

C and the lower bound for µC , both asymptotically tight,
can be easily exploited.
Remark: The outage capacity (Fig. 5) can be well approx-

imated in all the SNR regions by the proposed closed-form
expressions, with few limitations in the high SNR region

TABLE I
NORMALIZED ERRORS ON µC AND σ2

C FOR DIFFERENT APPROXIMATIONS
AND SETTINGS: δM,1 = (µC,1 − µC)/µC ; δM,2 = (µC,2 − µC)/µC ;

δV,1 = (σ2

C,1 − σ2

C)/σ2

C ; AND δV,2 = (σ2

C,2 − σ2

C)/σ2

C .

nT nR µC δm,1 δm,2 σ2

C δv,1 δv,2
1 1 9.14 0.091 0.012 3.29 -0.37 -0.53
2 2 17.75 0.066 -0.014 4.42 -0.063 -0.53
3 3 26.35 0.053 -0.028 5.13 -0.20 -0.69
4 4 34.95 0.043 -0.037 5.31 0.54 -0.97
6 6 52.01 0.035 -0.045 5.85 1.05 -1.90
1 6 12.43 0.0097 0.000040 0.39 -0.11 -0.15
2 6 22.58 0.012 -0.0011 0.84 -0.014 -0.11
3 6 31.61 0.014 -0,0032 1.4 0.11 -0.093
4 6 39.63 0.018 -0.0058 2.25 0,23 -0.18
16 20 150.93 0.0078 -0.00761 2.25 0,.82 -0.57

when the MIMO is squared. In such particular case, good
approximations are those of order 1.
Finally, to gain more insights on the behavior of different

approximations for µC and σ2
C in the high SNR region we have

collected in Table I the values of µC and σ2
C together with an

estimate of the the accuracy of the different approximations
in terms of normalised errors for different MIMO configura-
tions at ρ = 30 dB. It can observed that the second order
approximation µC,2 behaves as a lower bound of µC when
n > 1. It generally improves µC,1, with exception of cases
where m − n is zero or small and n is large. Also, the first
order approximation σ2

C,1 behaves as an upper bound of σ2
C

when n > 2. Moreover, the second order approximation σ̃2
C,2

behaves as a lower bound of σ2
C at large SNRs and improves

σ2
C,1 only when both m − n and n are not small. By also
looking at the results for σ2

D/µ2
D in Figure 2 we may conclude

that in general the proposed closed-form approximations are
tight when σ2

D/µ2
D is smaller than 1-2. When σ2

D/µ2
D is large,

second order approximations are not useful, while first order
approximation still works well but should be handled carefully.

VI. FINAL REMARKS
Building up on minors moments of complex Wishart ma-

trices, closed-form approximated expressions for the outage
capacity of MIMO systems operating in Rayleigh fading
channels are derived. The methodology proposed not only
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Fig. 4. Variance of capacity, σ2

C , as function of SNR for a 4x6 MIMO system. AP1 refers to σ2

C,1, AP2 refers to σ̃2
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Fig. 5. Outage capacity, C⋆, as function of SNR for a 4x6 MIMO system with Pout = 10−2. AP1 refers to the evaluation using µC,1 and σ2

C,1, AP2 refers
to the evaluation using µC,2 and σ̃2

C,2.

provides closed-form expressions of the outage capacity, but it
can also be extended to analyze MIMO networks with multiple
sources. The approximations derived are compared with the
capacity obtained through Monte Carlo simulations and that
obtained using known bounds. Such comparison confirms the
validity of the proposed methodology for a broad range of
MIMO settings - i.e., for different SNR values and number of
antennas - including massive MIMO.
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