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ABSTRACT

In this paper, we address the problem of estimating the

cross-correlation function between two microphone signals

recorded in different nodes of an ad-hoc microphone array

or wireless acoustic sensor network, where the transmission

of the entire microphone signal from one node to another is

undesirable due to power and/or bandwidth constraints. We

show that instead of directly computing the cross-correlation

function, it can be estimated as the solution to a deconvolu-

tion problem. This deconvolution problem can be separated

into two subproblems, each of which depends on one micro-

phone signal and an auxiliary signal derived from the other

microphone signal. Three different strategies for solving

this deconvolution problem are proposed, in which the two

subproblems are solved jointly (symmetric deconvolution),

separately (asymmetric deconvolution) or in a consensus

framework (consensus deconvolution). Simulation results

illustrate the performance difference in terms of estimation

accuracy, noise robustness, and transmission requirements.

Index Terms— distributed signal processing, distributed

optimization, cross-correlation function, ad-hoc microphone

array, wireless acoustic sensor network

1. INTRODUCTION

Ad-hoc microphone arrays and wireless acoustic sensor net-

works (WASNs) have recently gained an increasing interest

in the signal processing community [1]. Such arrays and net-

works provide a flexible way of connecting a multitude of mi-

crophones, often residing in different physical devices, with

the aim of covering larger spatial areas and increasing spa-

tial diversity. Multi-microphone signal processing in ad-hoc

arrays and WASNs is more challenging than in traditional mi-

crophone arrays, due to distributed nature of the signal ac-
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quisition and processing. In ad-hoc arrays and WASNs, mi-

crophones are usually connected through wireless radio links

and hence the transmission of signals or parameters from one

microphone to another requires power and bandwidth, which

is often costly.

The design of multi-microphone signal processing algo-

rithms for ad-hoc arrays and WASNs is therefore rooted in

distributed signal processing and distributed optimization the-

ory. A distributed design approach is often based on a (ap-

proximate or exact) reformulation of the original, so-called

global problem into a number of interrelated subproblems,

each of which can be solved in one of the array or network

nodes using local microphone signals and a limited number

of data shared by other nodes. Here, a node consists of one

or more microphones assembled in the same device, a local

processing unit, and means for wireless radio communication.

Two major challenges in this design approach are (1) to define

the interrelation between subproblems in such a way that the

amount of data (i.e., signal samples or parameter values) to be

shared among different nodes is minimized without compro-

mising the solution to the global problem, and (2) to derive

an efficient algorithm to solve the reformulated problem in a

distributed fashion. Two types of distributed estimation prob-

lems are often encountered in ad-hoc arrays and WASNs: (1)

node-specific estimation problems in which each node aims

to estimate a different signal or parameter vector [2], and (2)

consensus estimation problems in which all nodes aim to es-

timate the same signal or parameter vector [3].

In this paper, we consider the problem of estimating the

cross-correlation function between two signals acquired by

microphones in different array or network nodes. Micro-

phone signal cross-correlation functions are needed in a wide

variety of multi-microphone signal processing algorithms

such as time delay estimation, source localization, micro-

phone self-localization, beamforming, and (relative) acoustic

transfer function estimation, hence the estimation of cross-

correlation functions is of key importance. However, the

direct computation of cross-correlation functions in ad-hoc

arrays and WASNs would require the full transmission of raw

microphone signals within the network, which is highly un-

desirable as mentioned before. Our objective is therefore to
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reformulate the cross-correlation function estimation problem

in such a way that it can be efficiently solved in a distributed

manner. To the best of our knowledge, this particular problem

has not yet been considered in the literature. Two different

but somewhat related problems have recently been addressed

in [4, 5]. In [4], the distributed estimation of the inverse

short-time Fourier transform (STFT)-domain correlation ma-

trix of a multi-microphone signal vector is solved by means of

an algorithm requiring two distributed averaging operations

(performed by means of gossip algorithms) in each STFT bin.

In [5], the generalized eigenvectors corresponding to the Q

largest (or smallest) generalized eigenvalues of a pair of sen-

sor signal covariance matrices are estimated in a distributed

fashion, using an algorithm in which each node updates one

part of the Q-column matrix of eigenvectors and broadcasts a

compressed version of its sensors signals to all other nodes.

The starting point for the proposed distributed approach to

estimate the cross-correlation function between two signals, is

the observation that the convolution of the cross-correlation

function with one of both signals is equal to the convolu-

tion of the autocorrelation function of that signal with the

other signal. This equivalence allows to reformulate the cross-

correlation estimation problem as a deconvolution problem.

Moreover, this deconvolution problem can be separated into

two subproblems, each of which depends on one of both mi-

crophone signals and on a limited set of samples from an aux-

iliary signal derived from the other microphone signal. Given

that each of the subproblems can be solved relatively easily,

we propose three approaches for solving the global decon-

volution problem. In the symmetric deconvolution approach,

both subproblems are jointly solved, requiring the additional

transmission of a number of microphone signal samples be-

tween the two nodes. In the asymmetric deconvolution ap-

proach, we simply solve each subproblem in one node, result-

ing in different estimates of the same cross-correlation func-

tion in different nodes. Finally, in the consensus deconvolu-

tion approach, we again solve each subproblem in one node,

but by including consensus constraints we force the different

subproblem solutions to be equal. This consensus problem is

then solved by means of the alternating direction method of

multipliers (ADMM) [6].

The paper is organized as follows. In Section 2, we show

how the cross-correlation estimation problem can be reformu-

lated as a deconvolution problem. Section 3 introduces three

different approaches and algorithms to solve the deconvolu-

tion problem in a distributed manner. In Section 4, simula-

tion results are presented aiming at a performance comparison

of the three proposed approaches with the direct approach to

cross-correlation estimation in terms of estimation accuracy,

noise robustness, and transmission requirements.

2. DECONVOLUTION APPROACH TO

CROSS-CORRELATION ESTIMATION

We consider a pair of microphones indexed by (i, j) in an

ad-hoc microphone array or WASN, where microphone i

resides in a different node1 than microphone j. These mi-

crophones acquire the signals yi(n) = xi(n) + vi(n) and

yj(n) = xj(n) + vj(n), respectively, for n = 1, . . . , N .

Here, xi(n), xj(n) represent the correlated components (due

to near-field or far-field sound sources) and vi(n), vj(n) rep-

resent the uncorrelated components (e.g., sensor noise or dif-

fuse acoustic noise) in the microphone signals. It is assumed

that all signals are stationary and ergodic in the observation

interval [1, N ]. The aim is to estimate the cross-correlation

function

rij(t) = E{xi(n)xj(n+ t)} = E{yi(n)yj(n+ t)}, (1)

which is assumed to be well approximated (up to a scaling

factor which will be ignored here) by the sample cross-

correlation function (SCCF)

r̂ij(t) =

N
∑

n=1

yi(n)yj(n+ t) = yi(t) ∗ yj(−t), (2)

where the rightmost expression represents the SCCF by

means of a convolution (∗) operation. Note that in this

expression, the time lag t takes the place of the time index n.

We define a first auxiliary signal by convolving the SCCF

r̂ij(t) with the microphone signal yj(t), and we again invoke

the convolution notation to obtain the following equivalence,

sijj(t) , r̂ij(t) ∗ yj(t) (3)

= yi(t) ∗ yj(−t) ∗ yj(t)

= yi(t) ∗ r̂jj(t), (4)

where r̂jj(t) represents the sample autocorrelation function

(SACF) of yj(t). Similarly, a second auxiliary signal is de-

fined as follows,

siij(t) , yi(−t) ∗ r̂ij(t) (5)

= yi(−t) ∗ yi(t) ∗ yj(−t)

= r̂ii(t) ∗ yj(−t), (6)

where r̂ii(t) represents the SACF of yi(t). The auxiliary sig-

nals sijj(t), siij(t) can be related to the so-called coskewness

(third order central cross-moment) of the signals yi(t), yj(t),
but we will not explore this statistical interpretation. Instead,

we consider the SACFs and SCCF in (3)-(6) as noncausal fil-

ters operating on the signals yi(t), yj(t).
Consider the following sequence of signal processing and

transmission operations:

1For ease of notation, the indices (i, j) will be used to denote the micro-

phones as well as the nodes in which these microphones reside.

23rd European Signal Processing Conference (EUSIPCO)

261



Step 1: The SACF r̂jj(t) is computed in node j for lags

0 ≤ t ≤ τ by using the entire length-N signal yj(n). The

maximum lag τ ≪ N should be chosen such that the com-

puted samples r̂jj(t) are representative for the entire SACF

(which is possible whenever the SACF is a decaying or peri-

odic function as is often the case for acoustic signals).

Step 2: The SACF samples r̂jj(t), 0 ≤ t ≤ τ are transmitted

from node j to node i.

Step 3: The length-N auxiliary signal sijj(t) is computed

in node i by filtering the entire length-N signal yi(n) with

the noncausal filter r̂jj(t),−τ ≤ t ≤ τ having a symmet-

ric impulse response constructed from the SACF samples

r̂jj(t), 0 ≤ t ≤ τ .

Step 4: A frame of M ≪ N samples is selected from the

auxiliary signal sijj(t) and is transmitted from node i to node

j.

This 4-step sequence is also executed a second time, with

interchanged indices i and j.

After executing the above procedure, the SCCF can be es-

timated by solving a deconvolution problem based on (3) in

node j (making use of sijj(t) and yj(t)) as well as by solving

a deconvolution problem based on (5) in node i (making use

of siij(t) and yi(t)). If M = N , these deconvolution prob-

lems yield an exact estimate of the SCCF r̂ij(t). In Section

3, we will propose three approaches and algorithms to solve

these deconvolution problems in a distributed manner.

3. DISTRIBUTED CROSS-CORRELATION

ESTIMATION ALGORITHMS

We first make the additional assumption that we are interested

in estimating r̂ij(t) only for time lags in a limited and known

range [τ1, τ2], using a similar motivation as in Step 1 in the

above procedure, noting however that the range [τ1, τ2] need

not be centered around t = 0. If this range is unknown, it

can be estimated by first applying the asymmetric approach

outlined below for an extended range of time lags (since this

is the only approach for which the amount of data to be trans-

mitted among the nodes is independent of τ1 and τ2).

3.1. Symmetric deconvolution

Let us denote by m+1 the time index at which the length-M

frame starts which is selected from the auxiliary signal sijj(t)
in Step 4 of the above procedure. Consider the M×(τ2−τ1+
1) Toeplitz and Hankel matrices

Yi =







yi(m+ 1− τ1) . . . yi(m+ 1− τ2)
...

. . .
...

yi(m+M − τ1) . . . yi(m+M − τ2)






(7)

Ỹi =







yi(m+ 1 + τ1) . . . yi(m+ 1 + τ2)
...

. . .
...

yi(m+M + τ1) . . . yi(m+M + τ2)






(8)

and Yj , Ỹj defined similarly. Further consider the length-

(2τ + 1) SACF vector

r̂ii =
[

r̂ii(−τ) . . . r̂ii(τ)
]T

(9)

and r̂jj defined similarly, and the length-(τ2 − τ1 + 1) SCCF

vector to be estimated,

r̂ij =
[

r̂ij(τ1) . . . r̂ij(τ2)
]T

. (10)

Note that the computation of the length-M auxiliary signal

frames in Step 3 and 4 of the above procedure can then be

written as

sijj = Yir̂jj (11)

siij = Ỹj r̂ii. (12)

The symmetric deconvolution approach consists in solv-

ing the following least-squares (LS) problem,

r̂ij,S = argmin
r̂ij

1

2

∥

∥

∥

∥

[

sijj

siij

]

−

[

Yj

Ỹi

]

r̂ij

∥

∥

∥

∥

2

2

, (13)

in which the top M equations depend on data (sijj ,Yj) avail-

able in node j and the bottom M equations depend on data

(siij , Ỹi) available in node i. This LS problem can be solved

in either of the two nodes, under the condition that M+τ2−τ1
data samples are additionally transmitted (either the elements

of Yj from node j to i or the elements of Ỹi from node i to

j).

3.2. Asymmetric deconvolution

With the aim of avoiding the additional transmission of M +
τ2 − τ1 data samples as in the symmetric deconvolution ap-

proach, one could simply solve the upper half of the LS prob-

lem (13) in node j and the lower half in node i. This results

in the asymmetric deconvolution approach, which yields two

different SCCF estimates in the two nodes,

r̂
(j)
ij,A = argmin

r̂
(j)
ij

1

2

∥

∥

∥
sijj −Yj r̂

(j)
ij

∥

∥

∥

2

2
(14)

r̂
(i)
ij,A = argmin

r̂
(i)
ij

1

2

∥

∥

∥
siij − Ỹir̂

(i)
ij

∥

∥

∥

2

2
. (15)

3.3. Consensus deconvolution

Whereas the symmetric deconvolution approach yields a

unique SCCF estimate in both nodes at the cost of additional

data transmission, the asymmetric deconvolution approach

results in two different SCCF estimates but does not require

additional data to be transmitted. A compromise between

these two approaches can be found by reformulating the LS

problem (13) as a consensus estimation problem, in which

each node solves an asymmetric deconvolution problem sub-

ject to a consensus constraint. This consensus deconvolution
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approach hence requires the estimation of two local (̂r
(i)
ij , r̂

(j)
ij )

and one consensus (̂rij) SCCF vector,

min
r̂
(i)
ij

,̂r
(j)
ij

,̂rij

1

2

∥

∥

∥
sijj −Yj r̂

(j)
ij

∥

∥

∥

2

2
+

1

2

∥

∥

∥
siij − Ỹir̂

(i)
ij

∥

∥

∥

2

2
(16)

s.t. r̂
(i)
ij = r̂ij (17)

r̂
(j)
ij = r̂ij . (18)

The alternating direction method of multipliers (ADMM) pro-

vides a suitable optimization framework for solving consen-

sus problems in a distributed manner [6]. The ADMM re-

quires the augmented Lagrangian

Lρ

(

r̂
(i)
ij , r̂

(j)
ij , r̂ij ,λ

(i)
ij ,λ

(j)
ij

)

=
1

2

∥

∥

∥
sijj −Yj r̂

(j)
ij

∥

∥

∥

2

2

+
1

2

∥

∥

∥
siij − Ỹir̂

(i)
ij

∥

∥

∥

2

2
+ λ

(j)T
ij (r̂

(j)
ij − r̂ij) + λ

(i)T
ij (r̂

(i)
ij − r̂ij)

+
ρ

2

∥

∥

∥
r̂
(j)
ij − r̂ij

∥

∥

∥

2

2
+

ρ

2

∥

∥

∥
r̂
(i)
ij − r̂ij

∥

∥

∥

2

2
(19)

to be minimized sequentially w.r.t. the primal variables

r̂
(i)
ij , r̂

(j)
ij , the consensus variables r̂ij , and the dual variables

λ
(i)
ij ,λ

(j)
ij . The last two terms in (19) serve to smooth the

Lagrangian in the neighborhood of the solution r̂
(i)
ij = r̂

(j)
ij =

r̂ij , and the parameter ρ plays a crucial role in the ADMM

convergence behavior (see Section 4). Due to space limita-

tions, the derivation of the ADMM for the problem under

consideration is omitted, but the resulting algorithm is shown

in Algorithm 1. Even though efficient stopping criteria for

ADMM exist [6], we prefer to execute a fixed number of k

iterations since the amount of data transmission required in

Algorithm 1 scales linearly with k.

4. SIMULATION RESULTS

The proposed approaches to distributed cross-correlation es-

timation are evaluated by means of Monte Carlo simulations.

The microphone signals’ correlated components xi(n), xj(n)
are generated by filtering a stationary Gaussian white noise

signal of length N = 216 samples with two acoustic room im-

pulse responses generated by means of the randomized image

method [7] and truncated to 16 coefficients. The microphone

signals yi(n), yj(n) are obtained by adding Gaussian white

measurement noise to xi(n), xj(n). The time lag values are

chosen as τ = −τ1 = τ2 = 20. The estimation performance

is measured by means of the normalized mean squared error,

NMSE [dB] = 10 log10

L
∑

l=1

‖r̂ij,∗ − r̂ij,0‖
2
2

‖r̂ij,0‖22
(20)

where the length-(τ2−τ1+1) SCCF vector r̂ij,0 of the length-

N noiseless signals xi(n), xj(n) is used as the ground thruth,

r̂ij,∗ represents the estimated SCCF vector obtained from ei-

ther of the above approaches, and averaging is performed over

Algorithm 1 ADMM algorithm for consensus deconvolution

Input data vectors and matrices sijj ,Yj (at node j) and

siij , Ỹi (at node i), ADMM parameter ρ, initial variables

r̂ij [0], λ
(i)
ij [0] (at node j), and λ

(j)
ij [0] (at node i)

Output consensus SCCF estimate r̂ij,C

1: at node j: Φj = (YT
j Yj + ρI)−1, σj = Y

T
j sijj

2: at node i: Φ̃i = (ỸT
i Ỹi + ρI)−1, σi = Ỹ

T
i siij

3: for κ = 1, . . . , k do

4: at node j: r̂
(j)
ij [κ]=Φj

(

σj+ρr̂ij [κ−1]−λ
(j)
ij [κ−1]

)

5: at node i: r̂
(i)
ij [κ] = Φ̃i

(

σi+ρr̂ij [κ−1]−λ
(i)
ij [κ−1]

)

6: transmit r̂
(j)
ij [κ] from node j to i

7: transmit r̂
(i)
ij [κ] from node i to j

8: at node j, i: r̂ij [κ] =
1
2

(

r̂
(j)
ij [κ] + r̂

(i)
ij [κ]

)

9: at node j: λ
(j)
ij [k] = λ

(j)
ij [k−1]+ρ

(

r̂
(j)
ij [κ]− r̂ij [κ]

)

10: at node i: λ
(i)
ij [k] = λ

(i)
ij [k − 1] + ρ

(

r̂
(i)
ij [κ]− r̂ij [κ]

)

11: end for

12: r̂ij,C = r̂ij [k]

L = 100 Monte Carlo trials. Matlab code for the different

algorithms and for reproducing the simulation results and fig-

ures presented here are available online2.

A first simulation, the results of which are not shown here

due to space limitations, has been used to evaluate the influ-

ence of the ADMM parameter ρ for different values of the

SNR and frame length M . It was observed that for small

frame lengths (M ≤ 256), the optimal choice for ρ depends

on the SNR: in low-SNR conditions it is beneficial to give

a larger weight to the last two terms in the augmented La-

grangian (19), thereby encouraging convergence to the con-

sensus variable. In the next simulations we will use the values

ρ = 1, 0.2, 0.01 for the cases SNR = 0, 10,∞ dB.

In a second simulation, we compare the three deconvolu-

tion approaches to a direct computation of the SCCF based

on the same amount of data M (i.e., using N = M in (2)),

see Fig. 1(a)–(c). From the results for SNR = ∞ dB, we can

see that the deconvolution approaches suffer much less from

finite-sample effects compared to the direct SCCF computa-

tion. Also, in noisy scenarios, the deconvolution approaches

perform better. Overall, the asymmetric deconvolution ap-

proach performs slightly worse than the symmetric and con-

sensus deconvolution approaches, and the performance dif-

ferences fade out for increasing values of M . Finally, we

observe that the consensus deconvolution ADMM algorithm

provides a satisfactory result already after 1 iteration, and the

benefit of executing 2 or 3 iterations is generally small.

In a third simulation the same algorithms are compared,

but the value of M is chosen differently for each algorithm

such that exactly the same amount of data needs to be trans-

2http://homes.esat.kuleuven.be/∼tvanwate/software.html
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Fig. 1. Comparison of direct and deconvolution approaches to cross-correlation estimation for: (a)–(c) variable truncation length

M , (d)–(f) amount of transmitted data (TD).

Estimation approach TD

direct cross-correlation M

symmetric deconvolution 2M + τ + 1 + τ2 − τ1
asymmetric deconvolution M + τ + 1
consensus deconvolution M + τ + 1 + k(τ2 − τ1 + 1)

Table 1. No. of transmitted data (TD) samples per node for

different distributed cross-correlation estimation approaches

mitted among the nodes, as quantified by the number of trans-

mitted data (TD) samples, see Table 1. The NMSE curves in

Fig. 1(d)–(f) reveal that from this perspective, the symmet-

ric deconvolution approach is less interesting compared to the

asymmetric and consensus deconvolution approaches.

Summarizing, the presented simulation results illus-

trate that the consensus deconvolution approach with 1 or

2 ADMM iterations provides a suitable trade-off between the

NMSE performance and the data transmission requirements.
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