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ABSTRACT 

 

In this paper we describe two methods to estimate the 

concentration of polycyclic aromatic hydrocarbons 

(PAHs) in a methanol solution, from a gas chromatog-

raphy analysis. We present an innovative stochastic for-

ward model based on a molecular random walk. To infer 

on PAHs concentration profiles, we use two inversion 

methods. The first one is a Bayesian estimator using a 

MCMC algorithm and Gibbs sampling. The second one is 

a sparse representation method with non-negativity con-

straint on the mixture vector based on the decomposition 

of the signal on a dictionary of chromatographic impulse 

response functions as defined by the forward model. Some 

results provided by those two methods are finally shown 

with a comparison of the computational and the quantifi-

cation performances. 

 

Index Terms— Gas chromatography, Bayesian esti-

mation, Monte Carlo Markov Chain (MCMC), Sparse 

Representation, Dictionary, FOCUSS Algorithm. 

 

1. INTRODUCTION 

 

Analysis mixture is nowadays essential in pollu-

tant detection and quantification for instance to monitor 

the air we breathe or the water we drink. One of the usual 

processes for this analysis is to separate gas. In this paper 

the separation of components of a gas mixture is done 

using a chromatographic system. Our interest is focused 

on Polycyclic Aromatic Hydrocarbons (PAHs) in metha-

nol solvent. In this communication, we present a method 

to infer jointly on the concentration of each PAH and on 

other unknown parameters. In the next section, the Gas 

Chromatography (GC) - Flame Ionization Detector (FID) 

system is described. Then, we introduce two inversion 

schemes to retrieve the concentration of each component 

of the mixture from the chromatographic signal. We use a 

stochastic forward model based on the molecular random 

walk principle as described by Giddings and Eyring [1]. 

We introduce two methods to invert this model. The first 

one is a Bayesian parameters estimation scheme based on 

a microscopic model. The second one is a sparse represen-

tation method based on a dictionary of macroscopic para-

metric chromatographic responses built from Gidding and 

Eyring’s model. Finally, we compare those two methods, 

in terms of computational time and quantification perfor-

mances on experimental data. 

 

 

2. THE GC-FID SYSTEM DESCRIPTION 

 

The gas chromatography system used is com-

posed of an injector, a 30 meters length 5MS chromatog-

raphy column and a sensor to acquire a signal. In our 

study, the sensor is a flame ionization detector. As illus-

trated in Figure 1, the injector pushes a gas mixture thanks 

to a carrier gas into the column. It also helps to volatilize 

the solvent. The internal surface of the column is coated 

with a layer called stationary phase where molecules of 

organic compounds are adsorbed for a random time. The 

molecules are carried within the column by a carrier gas 

called mobile phase. The carrier gas, usually helium, has 

no interaction with the stationary phase. During the run 

through the column, a molecule will undergo a serie of 

adsorption and desorption steps. The number of these 

steps is depending on the nature of the molecule. The 

more it is adsorbed on the stationary phase, the more this 

molecule spends time in the column. This affinity rate 

with the stationary phase defines the total time ��	spent by 

a molecule in the column before elution, called retention 

time. This contributes to the separation power of the col-

umn. The adjusted retention time is defined as the total 

adsorbed time of a molecule. For sake of simplicity, we 

consider the retention time � as the adjusted retention 

time. It is also used for gas chromatography studies. 

 

 

Figure 1: Principle of the chromatographic system 
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Once the molecules exit the column, they arrive onto 

the FID where they are burned. The signal is acquired 

with two electrodes around the flame of pyrolysis, which 

are sensible to the ions generated by the combustion. The 

sensibility of this sensor is linked to the Carbon number of 

the burnt chemical entity. 

 

3. SIGNAL MODEL AND PREPROCESSING 

 
Knowing the chemical nature of the gas, the recorded 

signal is considered directly proportional to the number of 

molecules. Let’s quantify the number of molecules arriv-

ing on the sensor. According to the Giddings and Eyring’s 

model [1, 2], the probability that a molecule exits at time � 

is given by: 

 �����, 	
 = 2 

�� �


� 	�� �4 

�� √��� ��� �

�����


.       (1) 

Where: 

 	 = ��, �
 is the set of parameters of distribution (1) 

 � corresponds to the mean 

 � corresponds to the standard deviation 

 ���∙
 denotes the first order first kind Bessel function. 

 

The response of the sensor is considered as being perfect, 

that is to say the impulse response of the FID is modeled 

by a Dirac distribution. 

 

Finally, the probability �!"#$%&#$��
 that an unknown 

molecule from the sample, except those from the solvent 

which is in excess, exits the column at time � is given by: 

�!"#$%&#$��
 = ' () 	���*�, 	+,
-

).�
,																														�2
 

where / is the index of chemical entity, () 	its proportion, 

0 the total number of gases in the mixture and  	+ the 

parameters vector of retention time distribution for chemi-

cal entity /. We then propose to model the electric signal 

1, expressed in Volt unit, as: 

1��
 = 2 ' () 	���*�, 	+,
-

).�
+ 4��
,																									�3
 

where 2 is the coefficient of proportionality expressed in 

Volts by molecules and 4�∙
 is the noise function. 

Figure 2 shows a signal example. 

In this figure, we observe a baseline including a first satu-

rated peak which exponentially decays. It is the elution 

peak solvent, the methanol. Our interest is focused on the 

other peaks corresponding to chemical entities present in 

the injected gas mixture.  

We suppress this baseline and reduce the noise with a 

preprocessing filter. We use two successive averaging 

filters with two sliding rectangular windows at different 

scales. The size of the windows depends on the signal. 

This is not an automatic processing. The preprocessed 

signal is noted	166��
	and is represented in Figure 3. 

 

Moreover, the signal of interest starts after the saturated 

solvent first peak and ends just after the last peak. In this 

example we keep 32 500 signal samples. 

 

 

4. INVERSION 

 

We propose to investigate two inversion methods: the first 

one is Bayesian inference based on a microscopic model, 

while the other one is a sparse representation of the signal 

on a redundant dictionary based on a macroscopic model. 

 

4.1. Bayesian inversion 

 

From this preprocessed signal we construct a 

population of 7 retention times of some molecules ex-

tracted from the gas mixture analyzed. We define 

8 = 9�:	, ; = 1. . 7> as the list of retention times supposed 

independent. We set the size 7 of the population to be a 

compromise between statistical approximation quality and 

computational time. When	7	tends toward infinity the 

normalized histogram of all this population corresponds to 

the normalized preprocessed signal.  

 

Figure 2: Example of GC-FID signal 

 

Figure 3: GC-FID signal after preprocessing 
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Practically to construct	8, we sample random retention 

times under the normalized preprocessed signal distribu-

tion	 	?@@��

A ?@@��
	B� which is modeled by the distribution	�2
. 

 

Once 8 is sampled, we need to estimate the unknown 

parameters of the signal: 	+ and	(). 

 
We use a posterior expectation estimator to estimate sim-

ultaneously	C, D and	E = �()
.  

FG = H F
I

J�F|8
LF, 
where Ω is the domain of the possible values for the vec-

tor, 8 the observations and	F = �C, D, E
. 

 

In order to apply Bayes’ rule,	J�F|8
 ∝ J�F
	J�8|F
, we 

define the likelihood and settle the priors as in [3, 4]. 

 

The likelihood on the retention time list 8 is given by: 

 J�8|F
 = O ' () 	���*�:, 	+,
-

).�

P

:.�
. �4
 

 

We define the following prior distributions: 

 J�C
 = Q RSC, 1
2 TU, �5
 

 

 J�E
 = W; R 1
0 , … , 1

0U,	 �6
 

 

 J�D
 = Q RSD, 1
2 TU, �7
 

where Q	denote the normal distribution and W;	the Di-

richlet distribution. The choice of Dirichlet distribution 

ensures the property		∑ ()-) = 1	and	() ≥ 0	. 
The hyper-parameters	SC, SD and a of these priors are 

fixed constants. 

To define SC we use the findpeaks matlab function 

applied on the preprocessed signal. This function detects 

peaks in a signal by thresholding the differences between 

successive samples of the signal.  

Besides to define SD	we implement a method of moment 

around each peak. This is possible because the peaks are 

widely separated in this case thanks to the column. 

The dimension 0 of those hyper-parameters is determined 

by the number of peaks. This is a needed prior knowledge. 

Those hyper-parameters values provide first guess of the 

peak parameters. The Bayesian approach delivers fine 

tuning taking into account those approximate values and 

the exact measurement according to the molecular model. 

 

The analytical expression of the posterior distribution is 

unknown. So in order to compute the posterior mean esti-

mator we use a Markov Chain Monte Carlo (MCMC) 

algorithm. We note *F�b
, the Markov Chain. So we 

compute the estimator with the formula:  

FG = 1
c ' F�b


de�d

f.de��
, 

where cg	corresponds to the number of warming iterations 

and cg + c corresponds to the total number of iterations.  

To sample the Markov Chain under the posterior distribu-

tion, we use a Gibbs sampling which is described in Algo-

rithm 1. 

The parameters need to be sampled under their posterior 

distributions. As every posterior distribution is unknown 

we implement a Metropolis Hastings (MH) algorithm 

step. It consists in sampling a possible value F�b��
 know-

ing	F�b
under an arbitrary density. Then an acceptance 

ratio hi  is computed from those 2 values. The possible 

value is kept as the chosen value for	F�b��
	with a proba-

bility	hi . To sample a possible value, the arbitrary proba-

bility density used corresponds for each parameter to its 

prior distribution. In that case the acceptance ratios always 

correspond to a likelihood ratio which is then quickly 

computed. 

 

4.2. Sparse representation on a dictionary 

 

The preprocessed signal can be seen as a linear combina-

tion of sources. Sparse representation allows determining 

the best combination. Each source produces an elementary 

signal also called atom. Those atoms are gathered in a 

dictionary. According to our model we propose to con-

struct a dictionary j	of signals by choosing a structured 

grid for the 2 dimensions of the parameters space with 

regular sampling step on each dimension: 

 

 j = k	���*�: , 	+,l:,) 	. �8
 

 

The signal model (3) hence becomes: 

 8nn = j	n + o, �9
 

where 8nn	denotes the sampled normalized signal, q	the 

mixture vector to estimate and 4 the noise.  

Moreover, for physical reasons we introduce a non-

negativity constraint upon	n.  
In term of minimization, we rewrite the inverse problem 

to solve as: 

 
nr = minn 9‖8nn − j	n‖��,

q. � ∶ 	n > 0	and		min‖n‖g>, �10
 

 

where: 	‖∙‖�	denotes the L2 norm and 	‖∙‖g	the L0 norm. 

To solve this equation, we use a FOCal Underdetermined 

System Solution (FOCUSS) algorithm [5]. This algorithm 

• Initialization : 	C��
, D��
, 	E��
 
• For y	 = 	2	to	c + cg  

o Sample  J*C�b
||, D�b��
, 	E�b��
, 

o Sample  J*E�b
||, C�b
, D�b��
, 

o Sample  J*D�b
||, C�b
, 	E�b
, 

• End For. 

 Algorithm 1: Gibbs sampling for the Bayesian algo-

rithm 
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can easily take into account the non-negativity constraint 

compared to others algorithms like SL0 [6, 7]. 

The principle of the algorithm is to find iteratively a low 

resolution estimation of the signal by minimizing the 

quadratic quantity (10) and then prune this solution in a 

sparse signal representation. The pruning is achieved with 

a minimization of an Lp norm and by an affine scaled 

tranformation. We need to choose the power J	value close 

to zero. 

 

Finally the concentration vector E is estimated by normal-

izing the concentration of non-zeros values of the vec-

tor	n. 

 

5. RESULTS 
 

5.1. Bayesian algorithm 
 

For computational reasons the algorithm was ap-

plied with 7 = 603 molecules whose retention times are 

drawn from the signal of interest shown in Figure 2. Fig-

ure 5 shows the convergence of the log-likelihood applied 

with each	F�b
. The stability of the likelihood highlights 

the convergence of the Markov Chain. We fixed the num-

ber of warming iterations at 20000. 

 
5.2. Sparse representation algorithm 
 

Our dictionary is composed of 63 300 atoms of 

25 250 temporal samples, i.e.	j is 63 300 x 25 250 size. 

Figure 6 shows a rather good fit of the model to the pre-

processed signal. For readability only two peaks are 

showed. The power on the constraint is settled at	J =
0,01. 

 

The FOCUSS algorithm needs estimation of the noise 

variance. We estimate it on a portion of the preprocessed 

signal between 10 and 20 min where there is no peak in 

the signal. 

 

 

 
5.3. Algorithm comparison 
 

We fix the parameters of both algorithms at the 

values selected in sections 5.1 and 5.2.  
Let us examine the quantification performances. As we 

can see in Figure 7, the first little parasite peak present in 

the signal is not detected by Bayesian algorithm. This is 

explained by the fact that we need the number of peaks as 

a prior knowledge in this Bayesian estimation. This is an 

issue of this kind of Bayesian parametric inference com-

pared with the sparse representation method. Also this 

parasite peak introduces a bias on the neighboring esti-

mated peak. The molecules associated to this peak are 

indeed clustered with the molecules of the neighboring 

peak. 

 

The algorithms were applied on GC signals for analysis of 

a mixture of pollutants in methanol. We did these experi-

ments with different dilution rates (1, 10 and 100 �g/L). 

The references values of the proportions are the areas 

under the peaks. By the way we suppose that the ratios of 

PAHs aren’t modified by the different parts of the system. 

The estimation errors depend also on the PAHs dilution. 

Indeed the more the concentration of pollutant in the sol-

vent is important the more the signal to noise ratio (SNR) 

is high. Figure 8 sums up the concentration values ob-

tained by those two algorithms and the real values. We 

observe that sparse representation provides, in mean, 

better estimation than Bayesian algorithm. 

 

 

Figure 5: Log-likelihood with iteration 

 

Figure 6: Display of signal and fit for each method. 

 

Figure 7: Display of subtractions between signal and 

fits. 
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The relative root mean square error used is the square root 

of the quadratic error between the true and estimated sig-

nal divided by the power of the signal. It is given in the 

following table for each dilution and for each method. 

 
Bayesian 

Sparse representa-

tion 

Dilution 1 �g/L 1.64 0.68 

Dilution 10 �g/L 1.12 0.71 

Dilution 100 �g/L 0.58 0.47 

Table 1: Relative root mean square error for each 

dilution  

We observe the better performances of the sparse repre-

sentation. It’s caused by the fact that our Bayesian algo-

rithm is not designed for an unknown number of peaks 

which is not the case with dictionary. However in some 

applications the number of peaks is known. 

Also the errors are sensitive to the position peak estima-

tion ��
. 

 

Let us now compare the computing performances of the 

two algorithms which have been run on the same comput-

er. For the sparse representation algorithm we don’t take 

into account the computational time used for constructing 

the dictionary. The computational time for our Bayesian 

algorithm is }�7�	�c + cg

 elementary operations, 

whereas the sparse representation needs }�7~
 elemen-

tary operations. The following table shows the computa-

tional time for the lowest SNR, and the required memory 

resources we observed on our computer (Intel Xeon 2 

GHz CPU) using the Matlab software. The convergence is 

fastest for Bayesian method with higher SNR [8]. 

 

We note that the sparsity of the dictionary is not respected 

in our case. For computational reasons the number of 

atoms is not much larger than the number of temporal 

samples. FOCUSS algorithm needs indeed some memory 

resources, which limit the size of the dictionary. The dic-

tionary used requires 21 Go of RAM. 

 

6. CONCLUSION 

To sum up, we have presented a stochastic mo-

lecular model of GC-FID signal. We have proposed two 

inversion methods to compute the concentration profiles. 

We have compared their quantification and computational 

performances. The main results are that this parametric 

Bayesian estimation is faster and requires less memory 

resources than sparse representation. The quantification 

by sparse representation with possibility of estimating the 

number of peaks	0 gives in this case a better estimation 

of relative concentrations than the Bayesian method. This 

is due to an error on the a priori peak number caused by 

the existence of a contaminant peak. 

In perspective, we propose to improve the sparse algo-

rithm by introducing an iterative processing with an adap-

tation of the resolution of the dictionary at each iteration, 

starting from a dictionary with a low temporal resolution 

up to an adapted and high resolution dictionary. Thus it 

will become possible to add sparsity in the dictionary only 

in the temporal regions of interest. The Bayesian algo-

rithm will also be improved by implementing a non-

parametric Bayesian algorithm. This will allow analyzing 

the chromatographic signal with an unknown number of 

peaks [8]. 
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Figure 8: Ratios values, reference in blue and estimate 

by Bayesian in green and sparse representation in red. 

0,00

0,20

0,40

1 2 3 4 5

Reference values

for 1 ug/L

Sparse

Representation

Bayesian

0,00

0,20

0,40

1 2 3 4 5

Reference values

for 10ug/L
Sparse

Representation
Bayesian

0,00

0,20

0,40

1 2 3 4 5

Reference values

for 100ug/L
Sparse

Representation
Bayesian

  Bayesian 
Sparse representa-

tion 

Computational time 2596 sec 9855 sec 

Memory resources 500 Mo 100 Go 

Table 2: Algorithms comparison on computational time 

and required memory resources. 
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