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ABSTRACT
In this paper, we investigate the problem of visual informa-
tion encoding and decoding for face recognition. We pro-
pose a decomposition representation with vector quantization
and constrained likelihood projection. The optimal solution
is considered from the point of view of the best achievable
classification accuracy by minimizing the probability of error
under a given class of distortions. The performance of the
proposed model of information encoding/decoding is com-
pared with the performance of those based on sparse repre-
sentation. The computer simulation results confirm the supe-
riority of the proposed vector quantization based recognition
over sparse representation based recognition on several face
image databases.

Index Terms— quantization, visual information encod-
ing/decoding, face recognition, identification

1. INTRODUCTION

Visual information classification is of great practical interest
in many multimedia and security applications. Traditionally,
human face recognition is considered to be a reference ap-
plication for testing different recognition frameworks. The
main reasons for the interest in automatic human face recog-
nition systems are the wide range of real world practical ap-
plications such as identification, verification, posture/gesture
recognition, social network linking and multi-modal interac-
tion.

In the past, Nearest Neighbour (NN) [1] and Nearest Fea-
ture Subspace (NFS) [2] have been used for classification. NN
classifies the query image by only using its Nearest Neigh-
bour. It utilizes the local structure of the training data and
is therefore easily affected by noise. NFS approximates the
query image by using all the images belonging to an identical
class, using the linear structure of the data. Class prediction is
achieved by selecting that class of images that minimizes the
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Fig. 1. a) Block encoding: Assignment of the block bji to the
nearest centroids from the set Cj , ΠI,ε is an indicator func-
tion, vj ∈ <S represents the likelihood of the block bji to
the set of centroids Cj , Lji is the list of centroid indexes. b)
Block decoding: Assignment of block pj to the nearest cen-
troids from the set Cj using a constrained likelihood projec-
tion Πs, aj = Πs(v

j) is the projected vector, vj ∈ <S rep-
resents the likelihood of the block pj to the set of centroids
Cj , Lj is the set of indexes for the centroids cjw and Sj is
the set of corresponding coefficients obtained using Πs(v

j),
c) Decoding types: c.1 Hard decoding, c.2 ε-NN and c.3 L1

L2

norm constrained likelihood projection. Example of assign-
ments coefficients that might be used by MVQ. Shown here
are only those that correspond to the support (non-zero val-
ues) of the constrained likelihood projection. The sample is
from the Yale B database.
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reconstruction error. NFS might fail in the case that classes
are highly correlated to each other. Certain aspects of these
problems can be overcome by Sparse Representation based
Classification (SRC) [3]. However, Qinfeng at al. [4] argue
that the lack of sparsity in the data means that the compressive
sensing approach cannot be guaranteed to recover the exact
signal and therefore that sparse approximations may not de-
liver the desired robustness and performance. It has also been
shown [5] that in some cases, the locality of the dictionary
codewords is more essential than the sparsity. An extension
of SRC, denoted as Weighted Sparse Representation based
Classification (WSRC) [6] integrates the locality structure of
the data into a sparse representation in a unified formulation
and provides the best known recognition performance known
so far for this family of methods.

Here we use a single decomposition of the Multilevel
Vector Quantization (MVQ) approach for multiple levels of
multi-resolution image representation presented by [7]. It
should be pointed out that this method of visual information
encoding/decoding has similarities with the bag-of-features
(BoF) approach and Artificial Neural Networks (ANN). Since
the core of the MVQ representation is based on vector quan-
tization we will refer to this approach as vector quantization
based recognition. Practically, we consider and compare two
types of face recognition systems based on sparse representa-
tion and vector quantization.

This paper is organized as follows. Section 2 provides
the basic problem formulation. In Section 4, we describe the
proposed vector quantization method. The results of the com-
puter simulations are presented in Section 4 and Section 5
concludes the paper.

Notation: We use capital bold letters to denote real val-
ued matrices, W ∈ <NxKM , small bold letters to denote real
valued vectors: x ∈ <N . The estimate of x is denoted as x̂.
All vectors have finite length, explicitly defined where appro-
priate.

2. PROBLEM FORMULATION

The face recognition system consists of two stages: Enrol-
ment (coding) and Recognition (decoding).

At the enrolment stage, the facial photos from each sub-
ject are acquired and organized in the form of a codebook.
We will assume that the recognition system should recognize
K subjects. The photos of each subject are acquired under dif-
ferent imaging conditions such as lighting, expression, pose,
etc., which will represent the variability of face features and
serve as intra-class statistics. We will also assume that the
frontal face images are aligned to the same scale, rotation and
translation using common computer vision features.

We assume that every subject has M training samples.
Each sample from subject k, k ∈ {1, · · · ,K} is defined by a
vector xz ∈ <N , z ∈ {(1 + (k− 1)M), · · · , kM} represent-
ing a concatenation of aligned image columns. Moreover we

assume that the samples from all subjects are arranged into a
codebook represented by a matrix:

W = [x1,x2,x3, ...,xKM ] ∈ <NxKM . (1)

At the recognition stage, a probe or query y ∈ <N is pre-
sented to the system. The system should recognize all sub-
jects as accurate as possible based on y and the available W.
It is also assumed that y always corresponds to one of the sub-
jects represented in the database. If it is not a case, a rejection
option is integrated into the final decision.

3. MULTILEVEL VECTOR QUANTIZATION (MVQ)
BASED RECOGNITION

In this section we present only the single level decomposition
of the Multilevel Vector Quantization (MVQ) [7].

As a single level decomposition we refer to image par-
titioning into local block. The main idea behind the pro-
posed method is to learn a codebook of centroids Cj =
{cj1, · · · , c

j
S} for each block j, j ∈ {1, · · · , B}, where B is

the number of blocks for a particular decomposition level, S
stands for the number of centroids chosen to be the same for
all block locations j.

The decomposition of images on local blocks is explained
by the necessity to cope with the non stationary nature of dis-
tortions that are approximated by block-wise stationary ones
using local block decompositions. The overall goal of the
proposed method is to achieve a competitive classification ac-
curacy together with an acceptable memory storage and com-
plexity.

The MVQ based classification consists of three main
steps: (a) codebook construction, (b) block encoding using
the above codebook and (c) recognition based on the same
codebook.

3.1. Codebook construction

Given the training data xi, i ∈ {1, · · · ,MK} for all subjects
K with M training samples each, each image is partitioned
into B blocks of size L = n × n (where n ∈ Z, n ≤

√
N ).

Each block bji ∈ <L of a training image xi is defined as
bji = Mjxi, Mj ∈ <LxN , Mj has ones only on the diago-
nal (equivalent to cropping the j-th block of pixels from the
image). The codebook Cj for block j is generated using all
the j image blocks from all the images Wj = MjW, Wj ∈
<LxKM , and applying Vector Quantization (k-means algo-
rithm), resulting into a set of S centroids Cj = [cj1, · · · , c

j
S ].

3.2. Enrolment (coding)

Independently per any block location j, j ∈ {1, · · · , B} an
encoding is performed. This encoding consists of two parts.
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In the first part given a set of KM image blocks Wj =
MjW = [bj1, · · ·b

j
KM ], coming from K subjects, where ev-

ery subject has M samples, each block bji is assigned to the
nearest centroids using a k-NN or ε-NN strategy (bounded
distance decoding), represented by a set (list):

Lji =
{
w : d(bji , c

j
w) ≤ εL, 1 ≤ w ≤ S

}
, (2)

where d(., .) is a distance metric (e.g. Euclidean distance),
ε ≥ 0 and L is the block size. In equivalent vector form, the
code vector eji ∈ <S for the above list is defined as:

eji (w) = 1

{
exp

(
−d(cjw,b

j
i )

σ

)
≤ εL

}
, (3)

where w ∈ {1, · · · , S} and 1{.} denotes the indicator
function, σ is a parameter related to the second moment (e.g.
in Gaussian distribution it represents variance). The value of

σ is chosen such that
∑S
w=1 exp

(
−d(c

j
w,b

j
i )

σ

)
= 1.

The encoding results in a generation of a total of KM
code vectors Ej = [ej1, · · · , e

j
KM ] ∈ {0, 1}SxKM per block

location j each with dimension S. This type of coding is
shown in Figure 1 (a).

The second part consists of the subject encoding. This is
performed by pooling the block code vectors of all the image
blocks for a particular block position j that come from a par-
ticular subject k. This may be preformed by using average-
pooling (AVGP):

AVGP: sjk =
1

M

kM∑
z=1+(k−1)M

ejz, (4)

where k ∈ {1, · · · ,K}. The main idea behind this particular
form of pooling is to capture all centroids for a given block
decomposition that might represent a subject under various
observation distortions. In fact, if the observation model were
stationary and known, the representative centroids could be
computed analytically.

The final stage of encoding includes the generation of an
inverted file look up table where each block j ∈ {1, · · · , B}
has a set of centroids w ∈ {1, · · · , S} containing the indices
of corresponding subjects k ∈ {1, · · · ,K}. This look up
table is very sparse and efficient for memory storage.

3.3. Recognition (decoding)

The recognition consists of two parts: (a) block decoding and
(b) decision fusion.

3.3.1. Block decoding

The goal here is to find a set (list) of similar block codes with
the corresponding set of reliable coefficients.

Given an observation image y each block pj = Mjy,
pj ∈ <L, j ∈ {1, · · · , B} is assigned to the corresponding

set of centroids Cj based on a constrained L1

L2
norm projection

aj = Πs(v
j) of the vector vj . In this assignment the vector

vj ∈ <S represents the likelihood of the block pj to the set
of centroids Cj defined as:

vj =

[
exp

(
−d(cj1,p

j)

σ

)
, ..., exp

(
−
d(cjS ,p

j)

σ

)]
, (5)

where d(., .) is a distance metric (e.g. Euclidean distance)
and σ is the parameter related to the second moment (e.g. in
Gaussian distribution it represents variance).The value of σ is

chosen such that
∑S
i=1 v

j(i) =
∑S
i=1 exp

(
−d(c

j
i ,p

j)

σ

)
= 1.

The projection vector aj = Πs(v
j) is defined as a solution to

the following constrained projection problem [8]:

Πs : âj = argmin
aj

1

2
(vj − aj)T (vj − aj),

subject to

√
N − ‖a

j‖1
‖aj‖2√

N − 1
= s, (6)

where s is the predefined sparsity level. Though not presented
in [8], one may prove that the same algorithm solves ( 6) for

any s ≥
√
S− ‖vj‖1

‖vj‖2√
S−1 under weak assumptions about the distri-

bution of the values of the elements of vj . However due to
the space limitations we omit the proof.

In the decoding stage we might consider two sets. The
first set is the list Lj of indexes for the centroids cjw that are
most similar to the block pj under the projection operator
Πs, and the second set Sj is the set of projected cluster block
likelihood coefficients under the projection operator Πs:

Lj = {w : aj(w) > 0, 1 ≤ w ≤ S},
Sj = {aj(w) : aj(w) > 0, 1 ≤ w ≤ S}, (7)

where aj = Πs(v
j). This type of decoding is shown in (Fig-

ure 1 (b).
Given the vector aj as an activation code and the subject

block codes sjk the decoding similarity score is defined as:

tj(k) = sjk
T
aj , 1 ≤ k ≤ K. (8)

It is important to note that when only the list Lj is used to
construct the activation code, the method is considered to be
hard decoding (i.e., aj(w) = 1, w ∈ Lj in (7). On the other
hand when the two sets Lj and Sj are used to construct the
activation code, the method is considered to be soft decoding.
In the case of soft decoding, one may expect that the reliable
centroids will obtain weights from the set Sj closer to 1 and
non-reliable closer to 0. It is also remarkable that in the case
of reliable decoding, for a particular high sparisty level s the
number of elements of the set Sj will be significantly smaller
then S indicating that the reliable centroid(s) is(are) found.
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Otherwise, all elements of this set will have identical weights.
Therefore, one can use the notion of sparsity to estimate the
reliability of the produced estimate (as an example in Figure
1 (c) we show the distribution of the values of the elements in
the hard and soft assignment vectors).

3.3.2. Decisions fusion

Basic fusion: The final decision using a particular decom-
position is produced as a result of the most likely subject
k ∈ {1, · · · ,K} selection that obtains the majority of votes:

î = max
1≤k≤K

B∑
j=1

tj(k) = max
1≤k≤K

B∑
j=1

sjk
T
aj . (9)

Weighted fusion: Given tj , it’s sparsity level is denoted as

h(j) =

√
K− ‖tj‖1

‖tj‖2√
K−1 , j ∈ {1, · · · , S} and the vector of weight

coefficients is defined as hs = Πs(h), where Πs is the pro-
jection defined by equation ( 6). This fusion as a result pro-
duces the most likely subject k selection that obtains the hs(j)
weighted majority of the votes:

î = max
1≤k≤K

B∑
j=1

hs(j)t
j(k). (10)

4. COMPUTER SIMULATIONS

In this section we present the results of the computer simula-
tion. The computer simulation is performed to compare the
recognition rate of WSRC versus MVQ in three different set-
ups under: varying dimensionality, random pixel corruption
and continuous occlusion.

The computer simulation is carried out on 4 publicly
available face datasets, namely: Extended Yale B [9], AR
[10] PUT [11] and FERET [12]. The Extended Yale B con-
sists of 2414 frontal face images of 38 subjects captured under
various laboratory-controlled extreme lighting variability. All
the images from this database are cropped and normalized to
192x168 pixels. The AR database consists of over 4, 000
frontal images for 126 individuals. For each individual, 26
pictures were taken in two separate sessions. These images
include a variety of facial variations, including illumination
change, expressions variability, and facial disguises. In the
experiment here, we chose a subset of the data set consisting
of 100 subjects. For each subject, 14 images with only illu-
mination change and expressions were selected. The images
are cropped and normalized to 165x120 pixels. The PUT
database consists of hi-resolution images of 100 people. Im-
ages were taken in controlled conditions under various pose
variation. In our set up, we use a total of 2200 cropped and
normalized to 178x178 pixels. The FERET database consists
of 13,539 facial images corresponding to 1,565 subjects, who

Recognition rates (%)
Yale B AR

Dimension 30 42 120 504 30 54 130 540
WSRC 79.3 88.2 93.8 96.6 58.9 70.1 83 92.8
MVQ 53.1 80.1 95.5 98.3 62.9 80.8 94.3 98.1

PUT FERET
Dimension 36 64 121 484 25 49 100 441
WSRC 80.1 90 93.1 96.2 41.7 45.7 58 79.1
MVQ 92.9 96.8 98.1 98.9 58.8 79.7 88.3 91

Table 1. WSRC versus MVQ: Recognition results on Yale B,
AR, PUT and FERET databases using different image dimen-
sions

are diverse across ethnicity, gender, and age. In our exper-
iments, we used two subsets FERET-1 and FERET-2 from
the FERET database. More precisely we used frontal face
images from the sets Fa and Fb and in total used 546 images
downscaled to resolution 128x128.

For all images in the above datasets, the facial part of each
image was manually cropped, aligned according to eyes posi-
tions.

In all of the computer simulations the face images are con-
verted to gray scale. For all of the images we use raw, basic,
elementary image pixel values (block of image pixel values)
as features. To be unbiased in our validation of the results
we use 5-fold cross validation, where for single validation for
each subject, half of the images are selected at random for
training and the remainder for testing.

In all the experiments the MVQ model uses trained code-
books that consists of a set of S centroids, the number of the
codebooks Cj is equivalent to the number of block locations
B. For any block location j the codebook Cj = {cj1, · · · , c

j
S}

is learned with the k-means algorithm. The number of cen-
troids in every codebook is equivalent to the half of the avail-
able training data and the block size L = 9. In the block
encoding part the sparsness coefficient s in ( 6) is set to high
value . In the decision fusion part we use the rule ( 10) and
the sparsness coefficient is set to low value.

As an implementation of WSRC here we use cvx [13]
with Mosek 6.9 solver and WSRC parameters as specified in
the original paper [6].

We test and compare the recognition rate of the WSRC
and MVQ methods under varying dimensionality on all of the
four databases. In the case of random noise corruption and
continuous occlusion the robustness comparison is made us-
ing the Extended Yale B face database.

4.1. Recognition under varying dimensionality

In this experiment the used downsample ratios per database
Yeale B are 1/32, 1/24, 1/16 and 1/8; for the databases AR
and FERET are 1/24, 1/18, 1/12 and 1/6; and for database
PUT are 1/28, 1/21, 1/16 and 1/8. The results are shown on
Table 1. As we may see from this results the MVQ method
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Recognition rate under random corruptions (%)
Corruption (%) 0 10 20 30 40 50 60 70 80 90
WSRC 100 100 100 98 95 79 57 33 18 6
MVQ 100 96 86 67 46 32 23 13 8 5
MVQ* 100 100 99 99 97 90 79 52 23 7
Recognition rate under continuous occlusion (%)
Occluded (%) 0 10 20 30 40 50
WSRC 100 100 96 89 78 61
MVQ 100 99 98 97 94 89

Table 2. WSRC versus MVQ: Recognition rate under ran-
dom corruptions and varying level of continuous occlusion,
in MVQ* the block size is set to L = 225.

has consistently higher recognition rates on all databases per
all of the chosen dimensions except for the two smallest di-
mensions at the Yale B database.

4.2. Recognition despite random pixel corruption and
continuous occlusion

Here the setup is equivalent to the one defined in [3]. he
various level of random noise, from 0 percent to 90 percent,
are simulated by corrupting a percentage of randomly cho-
sen pixels from each of the test images, replacing their values
with independent and identically distributed samples from a
uniform distribution. The various levels of contiguous occlu-
sion, from 0 percent to 50 percent, are simulated by replacing
a randomly located square block of each test image with an
unrelated image. The results are shown in Table 2. As we
may see from these results the MVQ method has consistently
higher recognition rates under random noise corruption how-
ever at a cost of using bigger image blocks. This may be ex-
plained by the fact that the bigger blocks are less effected by
the uniform noise. In the later case the blocks that come from
the non-occluded regions are crucial for reliable and accurate
results.

We may thus conclude that by using a simple, local de-
composition representation with proper reliability estimates
such as MVQ presented here, one may achieve high recogni-
tion accuracy.

5. CONCLUSIONS

In this paper we considered the face recognition problem from
both machine learning and information coding perspective,
adopting an alternative way of visual information encoding
and decoding. Our model for recognition is based on multi-
level vector quantization (MVQ), conceptually similar to BoF
and CNN. The results from the computer simulations confirm
that the MVQ based recognition model has a superior accu-
racy over weighted sparse representation base recognition [6]
on several face image databases.
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