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ABSTRACT

Motion capture (mocap) is rapidly evolving and embraced
by a growing community in various research areas. However,
a common problem is the high dimensionality of mocap data,
and the difficulty to extract and understand meaningful fea-
tures. In this paper, we propose a framework for the rapid
prototyping of feature sets, MotionMachine, which helps to
overcome the standard problem of mocap feature understand-
ing by an interactive visualisation of both features and 3D
scene. Our framework aims at being flexible to input data for-
mat, and to work both offline or in real-time. The design of
the feature extraction modules in C++ is intended for modules
to be used both for visualisation in the MotionMachine frame-
work and for integration in end-user applications or commu-
nication with other existing softwares. We present two exam-
ples of use-cases in which the main features of this framework
have successfully been tested.

Index Terms— mocap, feature prototyping, library

1. INTRODUCTION

Motion capture (mocap) is the process of recording a live mo-
tion event and translating it into mathematically-usable sig-
nals. These signals correspond to the tracking of a number of
key points in space over time, combined as one 4D (three spa-
tial dimensions plus time) representation of the performance
[1]. A skeletal model is commonly adopted for full-body and
hand motion tracking. These models represent motion as the
evolution of the 3D cartesian coordinates of the joints or the
3D angles between body segments over time. Raw skeletal
data can be used to play the captured performance back on
3D animated stick figures, but observing and manipulating
the raw position or angle data directly is extremely difficult.

Nowadays mocap is substantially moving from a niche
technology to the mainstream. On the one hand, expensive
and complex professional mocap systems (such as optical
marker-based or inertial systems) are becoming more afford-
able and easier to use. On the other hand, low-cost motion
capture sensors (e.g. depth cameras) are making their way
into consumer products. As a result, mocap is spreading into
the workflow of a growing number of practitioners in fields
such as biomechanics, animation, health, sports, humanities,
arts, functional interactions, etc.

978-0-9928626-3-3/15/$31.00 ©2015 IEEE

2446

Because raw skeletal data is particularly unusable, a large
majority of applications using mocap data for motion anal-
ysis, editing, synthesis or recognition require some kind of
motion parametrisation. Such parameterisation can vary from
straightforward editing of the raw data (e.g. scaling, referen-
tial change) to seeking for higher-level motion features such
as “smoothness” or “activity” [2]. There are many disciplines
that could benefit from advances in motion capture technolo-
gies and, in most cases, the performance of the designed
application strongly depends on how the motion processing
chain is adapted to the considered use case.

Figuring out such adequacy requires to prototype motion
feature extraction schemes. By prototyping, we mean the
ability to rapidly define motion features, extract them on pre-
recorded or live-streamed mocap data and select the most ap-
propriate set of features. However there is currently a lack of
motion feature extraction libraries or even of recognized stan-
dard features, contrarily to areas such as audio or image signal
processing. We foresee four aspects to take into account so as
to address this situation:

e There is actually no existing formalism to skim through
an existing set of mocap signal processing algorithms and
rapidly create, aggregate and test new motion features. As
a result, the existing corpus of motion features extraction
algorithms is not easily accessible nor extendable.

e Motion processing chains are nowadays highly depend-
ing on a given sensor or platform. Building sensor-
independent skeletal models, and therefore skeleton-to-
skeleton adaptation mechanisms, could greatly help the
transfer of existing motion features to new use cases.

o There is a lack of adequate visual feedback and interaction
to evaluate the relevance of a given attempt. Often animat-
ing 3D stick figures and prototyping motion features are
achieved in incompatible environments. Furthermore, no
satisfactory annotation tool exist for mocap data.

e There is a need for the prototyped motion feature extrac-
tion algorithms to be directly applicable to real use cases.

In this paper, we introduce MotionMachine', a new tool
for rapidly prototyping motion features, so as to adequately
fit the considered use cases. It comes as a cross-platform C++

lwww.numediart.org/motionmachine
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API enabling the creation and extraction of motion features
on mocap data and the real-time visualisation of such features
in combined and synchronised 2D and 3D scenes. Section 2
gives an overview of related work in the field. In Section 3
we present the tool and its functionalities. Then we describe
two scenarios in which MotionMachine is useful in Section 4.
Finally we highlight conclusions and future work.

2. RELATED WORK

As presented in the introduction, mocap data feature proto-
typing is a research field beneficial to any application using
3D mocap data. However, in most works the discussion about
the features themselves is overlooked. In many cases, no fea-
ture extraction is performed at all and the raw data (Cartesian
coordinates or 3D angles) is used almost directly as an input.
This will often lead to non optimal results because the high di-
mensionality of the data will hamper the robustness of the ap-
plication. In the case of machine learning based applications,
the mocap training datasets are often quite small compared
to the dimensionality of the data. Some a priori knowledge
about the motion should hence be considered, through an ef-
ficient feature selection, before training the models. Very low
level features such as velocity, acceleration or angle between
segments are some of the most common features encountered
in various works, e.g. in [3,4].

Principal component analysis (PCA) is a common way of
reducing the dimensionality of mocap data, e.g. [5-7], based
on the assumption that, despite the high dimensionality of the
original motion description space, most human movements
have an intrinsic representation in a lower dimensional space
[8]. However such an approach is highly dependent on the set
of training data and can hardly be generalized to new motions.

Some previous work have proposed interesting sets of fea-
tures for motion analysis in different contexts. For instance,
Miiller proposes a set of 39 geometry-based relational binary
features (e.g. hands above head, hand moving forwards, etc.)
[9]. Such features are more suitable for generic applications
than features based on raw numerical data.

In addition to low level features and relational features,
many other features have been proposed in different use cases.
However, they are hardly ever the focus of the research and
are rarely adopted in other use cases nor compared to other
features. We only name a few to illustrate the diversity of the
approaches. Kahol et al. propose a feature which they call
“activity” which represents velocity, acceleration and mass of
body segments, and which is measured across a dynamical
hierarchical model of the human body [2]. Megali et al. use
a short-term Fourier transform (STFT) of acceleration com-
bined with a K-means clustering to transform the STFT ac-
celeration vector into mono-dimensional space [10]. Many
motion features have also been proposed in the field of mo-
tion analysis based on RGB videos (e.g. [11]), which has been
active for way longer than the 3D mocap data field, and could
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be adapted to mocap data in the future.

Burger and Toiviainen propose a Matlab toolbox for
analysing and visualizing mocap data which is aimed at
investigating music-related movement [12]. However all fea-
tures and skeleton visualisations are static, and the Matlab
based implementation is not designed for integration in final
applications. Alemi et al. [13] have recently presented Mova,
an interactive movement analytics framework. Their work
concentrates on the feature extraction and visualisation for
motion analysis. The interaction mainly consists in being
able to chose the features to visualize.

Another important missing functionality for mocap data
is the lack of an appropriate annotation tool. Annotations are
often an essential aspect when designing new features, for in-
stance for discriminating between specific gestures, or to iso-
late the useful parts of a continuous mocap data recording.
Anvil, a software developed originally for video annotation
has a plugin which supports only BVH files, one specific mo-
cap data format [14]. Moreover, the plugin requires an RGB
video to be loaded at the same time as the mocap data. Mo-
tion curves can also be visualized at the same time as the 3D
scene. However the interface is not open source nor very flex-
ible, and is not designed for the addition of other features.

Very few works propose a framework for mocap feature
extraction and all of them target the motion analysis use case.
No existing platform aims at rapid prototyping of feature ex-
traction, visualisation, understanding and selection for any
kind of application. In MotionMachine we aim at proposing
such a framework focused on the mocap signal feature proto-
typing problem, by choosing an appropriate architecture.

3. ARCHITECTURE

MotionMachine is a C++ library that enables the rapid pro-
totyping of motion features, their extraction on standardised
mocap data structures coming from typical mocap file formats
and live UDP streams and their selection so as to represent
motion in the considered use case. The overall data flow used
in MotionMachine is presented in Figure 1. The library is
built from two main modules: one for feature extraction, the
other to take care of 2D and 3D scenes visualisation. In the
following subsections, we show how the tool addresses the
feature extraction issues mentioned in Section 1.

3.1. Skeletal Model Independent Motion Data

Nowadays the number of available mocap sensors is signifi-
cantly growing. Most of these devices provide skeletal data,
i.e. changes in the position and/or direction of 3D joints
and/or bones. For the moment, most of the achieved motion
processing is model-specific and the corresponding know-
how is not directly transferrable to another model, though the
underlying morphology is similar.
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Fig. 1. Overall data flow used in MotionMachine: modular
structure to process mocap data files and/or streams into fea-
tures files and streams, labels files and visualisation.

In this work, we propose a model-independent hierar-
chical formalism for mocap data storage and manipulation.
This formalism is based on imbricated data structures that are
aimed at being generic, configurable and easily extensible, so
as to fit most of the motion capture situations:

e Node stores the 3D position and/or orientation of a joint.

A name field can optionally be associated with the Node.

e [Frame is a time-tagged aggregation of Nodes. A bone
structure connecting the Nodes can optionally be added.

e Trace is an aggregation of time-tagged Nodes correspond-
ing to the same body joint. It represents the evolution of
that Node over time.

e Track is an umbrella over the whole mocap data file. It
can be sliced according to Frames or Traces.

All MotionMachine data types can be loaded/saved from
different file formats. Currently, the supported formats are our
open flat file format and two typical mocap file formats: BVH
and C3D. The structure of data types is illustrated in Figure 2.
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Fig. 2. Schematic view of the structure of mocap data in Mo-
tionMachine: Track is sliced into Frame or Trace, then into
Node. Node contains position and/or orientation.

3.2. Feature Extraction Plugins

Rapid prototyping of motion processing chains requires to
work with a high-level consistent syntax and to build up sys-
tem complexity by growing a list of standardised modules.
Therefore we have integrated a plugin architecture, so as to
quickly extend the default function set with custom feature
extraction techniques. We have already tested this approach
with several motion feature extraction algorithms:
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e A Signal Processing toolbox with a set of basic algorithms
such as mean, min/max, thresholds, peak picking, etc.

o A Geometry toolbox with geometrical primitives: point-
to-point and point-to-plane distances, point velocity in the
3D referential or projected in a given direction or plane,
angle between bones, bounding box features, etc.

o The full implementation of Miiller’s full-body continuous
and binary motion features, as described in [9].

e A set of experimental features that aim at describing the
hand postures: open/closed, orientations, intra-finger ex-
tensions, left/right asymmetry, pointing finger, etc.

3.3. Interactive 2D/3D Scene View

Among the most critical aspects of prototyping a motion pro-
cessing chain, we find the instantaneous user feedback. It
often takes time for the user to understand complex mocap-
related features and figure out how to display the right infor-
mation so as to evaluate the relevance of his/her approach.
Moreover integrating user interaction (such as manipulating
the 3D scene or reading a feature value by hovertone the dis-
played graph with the mouse) often leads to extra work, irrel-
evant for the studied case.

In MotionMachine, we wanted to improve the affordance
of mocap data processing by solving several visualisation is-
sues and bring the user faster to his/her valuable work. Such
improvements were achieved by balancing the apparent com-
plexity of the environment. As aresult, the library comes with
an integrated 2D/3D scene viewer for displaying mocap data
on screen and interacting with the contents. Here are several
key aspects that this tool solves at the mocap signal level:

e An important aspect of mocap visualisation is to map a
given set of motion signals onto the right representation.
In our data structure, we handle these possible mistakes:
Node jointly handles position and/or orientation signals
and the 3D visualisation adapts accordingly.

e Motion capture data is prone to have holes in the signal
streams, i.e. times for which a given Node position or
orientation is undefined. Misinterpreting such holes in
the data can lead to wrong feature extraction and visu-
alisation. Our Frame visualisation scheme takes care of
those possible degradations and adapts accordingly: we
have descriptive formalisms for missing that are handled
by both the querying and drawing mechanisms.

3.4. Annotation

As described in Section 2, the annotation functionality is very
important and it is hard to find a tool that accurately annotates
mocap sequences. In MotionMachine, we have integrated a
lightweight annotation scheme. It allows the programmatic
insertion of Labels in the motion capture Track. It means that
the time tag of these Labels can be automatically derived from
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signal properties in the feature extraction code. Moreover
these Labels get properly rendered in the 2D view and can
be rearranged manually. Labels can also be imported from
and exported to label text files (. 1ab extension).

4. USE CASES

In this Section, we introduce two use cases in which Motion-
Machine brings improvements in the motion data representa-
tion and the interactive prototyping of feature extraction.

4.1. Contemporary Dance Analysis

In this first use case, our goal is to analyse contemporary
dance. Our contemporary dance database has been recorded
in the framework of the i-Treasures European Project 2, and
consists in free improvisations of six contemporary dancers
on five 45-second music extracts. The 30 mocap sequences
were recorded at 177 fps thanks to a Qualisys optical motion
capture system. After post-processing, the skeleton was rep-
resented by 22 nodes. The complete analysis of our database
is beyond the scope of the present paper. However the choice
and fine tuning of a representative set of features required for
our analysis was conducted using the MotionMachine frame-
work, which facilitated the whole process. This analysis re-
quired the segmentation of the mocap sequence correspond-
ing to the 45 seconds of music into one-second segments.

A bar of four beats had been added at the beginning of
each original sound file, and the dancers were asked to per-
form a “clap” motion. The synchronisation of the mocap files
with the original soundtracks, was performed by calculating
the distance between both hands and extracting the first peak
in the mocap sequence. The annotation function was used
to generate labels for 45 one-second segments, based on this
synchronisation. The features extracted were the 39 relational
features proposed by Miiller [9]. Miiller’s features are frame-
by-frame binary decisions obtained by thresholding a set of
continuous features computed on the full-body skeleton. The
visual feedback enabled us to tune those thresholds in the con-
version of continuous features to binary ones as well as to ver-
ify the soundness of the automatic segmentation. Finally the
binary features had to be converted from one value per frame
to one value per segment, and exported to XML file format.

All these operations only required a few lines of code
thanks to the high-level functions proposed in MotionMa-
chine, and the extraction of the same feature files for new
dance recordings can be generated by a simple drag-and-drop
of the new motion file in the visualisation window, illustrated
in Figure 3. Our finished prototyping scheme can hence be
released as a standalone API which will allow the user to drag
an drop new mocap sequences corresponding to the same 45
seconds dance sequence preceded by a clap motion. The 39
Miiller features will automatically be extracted, the dance

2yww.i-treasures.eu
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sequence will be isolated and segmented into one second
segments, the corresponding labels will be saved as a text file
and features will be averaged on these segments and saved in
XML format using the TinyXML library.
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Fig. 3. Visualisation of 3D scene and five Miiller features
(continuous in blue and binary conversion in purple) and au-
tomatic annotation for one contemporary dance sequence.

4.2. Bi-Manual Musical Instrument

In this second use case, we have used MotionMachine to pro-
totype the mapping layer of a new digital musical instrument
(DMI). Wanderley et al. define the topology of a DMI with
three main parts: the sensors, the sound synthesis engine and
the mapping [15]. The role of the mapping is therefore to find
the most appropriate interpretation of the performer’s gestures
and connect it to determined actions on the synthesiser.

New end-user depth cameras like the LeapMotion now
give access to very sophisticated 3D skeletal models of the
hands. In the current SDK, each hand is represented by 21 3D
joints (position, orientation and velocity) plus arm and palm
3D position, orientation and velocity. Though very detailed,
such raw data is barely usable as is and higher-level represen-
tations of hand motion are a necessary mapping strategy for
the development of a usable musical instrument.

The ability of MotionMachine to run similarly on offline
mocap data and online UDP streams makes it a very appropri-
ate tool for designing mapping layers in DMIs. In this work,
we have used our tool to prototype two higher-level motion
features to be used in the control of a sound synthesiser:

e Pointing finger attributes: by clustering fingertip distances
to a given reference plane, we are able to narrow down
“pointing finger” positions and directions, i.e. fingers that
bend more significantly towards the reference plane.

e Opening ratio of the hand: by computing the average an-
gle between all the metacarpal bones and the palm, we are
able to have a stable ratio for the hand closure, going from
flat fully-opened shape to fist-like fully-closed shape.
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Fig. 4. Visualisation of the right hand skeletal model. Data
stream comes from a UDP sender and the 2D view represents
the wrist z, y and z positions.

In our first iterations, we have validated the consistency
of these two motion features with the integrated visual feed-
back. We have also directly tested the usability of the mu-
sical instrument, thanks to the realtime UDP streaming of
these motion features to the sound synthesiser. Such features
have been rapidly developed. It encourages us to envision that
many more could be tested in a reasonable amount of time.

5. CONCLUSION

In this paper we have presented a new framework for the pro-
totyping of mocap signal features. We believe such a frame-
work could be beneficial in most mocap-based research ar-
eas, such as motion analysis, synthesis, edition or gesture
recognition. We described several issues that our framework
is addressing: making motion features more understandable
thanks to a superimposed 2D/3D scene visualisation, facil-
itating the use both offline (with recorded files) and online
(UDP data streams), and ensuring maximum flexibility re-
garding the input data with generic 3D points and any possible
skeleton configuration. Two use cases have been presented to
illustrate some of the functionalities offered by MotionMa-
chine. Further work will include the implementation of ad-
ditional features, integration of automatic feature suggestion
and/or selection techniques, and the test of new use cases.
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