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ABSTRACT

We present in this paper a new approach for human-action
extraction and recognition in a multi-modal context. Our so-
lution contains two modules. The first one applies temporal
action segmentation by combining a heuristic analysis with
augmented-joint description and SVM classification. The
second one aims for a frame-wise action recognition using
skeletal, RGB and depth modalities coupled with a label-
grouping strategy in the decision level.
Our contribution consists of (1) a selective concatenation of
features extracted from the different modalities, (2) the in-
troduction of features relative to the face region in addition
to the hands, and (3) the applied multilevel frames-grouping
strategy. Our experiments carried on the Chalearn gesture
challenge 2014 dataset have proved the effectiveness of our
approach within the literature.

Index Terms— human action recognition, temporal seg-
mentation, Chalearn gesture challenge, Kinect, SVM.

1. INTRODUCTION

Human-action recognition is still an open research field in
computer vision community. After a first trend of spatio-
temporal feature extraction and learning from RGB video
streams, the actual orientation leans towards the description
from more than one modality combined with massive learn-
ing strategies [1]. Joints and depth streams came to enrich the
existing learning inputs, and the introduction of Microsoft’s
Kinect sensor accelerated this progress.
The Chalearn Gesture Challenge (CGC) has been focusing in
the last years on the recognition of human sign language in
different scenarios such as one/multiple-shot(s) learning, sin-
gle/multiple actors and variation of learning modalities [2,3].
The present work is based on the experimental sets of the
CGC 2014 dataset. It offers 4 kinds of modalities: the RGB,
the depth, the mask video streams and the skeletal joints ex-
tracted from the kinect sensor. As shown in Fig.1, our goal is
to automatically retrieve the motions and to recognize them
from the unlabelled continuous data streams offered. The
main challenges include the presence of continuous actions
in addition to extra non-vocabulary actor behaviours.

Fig. 1: Our solution first extracts action positions, then recog-
nises each frame label. Finally, it applies a grouping strategy
to get each segment’s unified action-label raging from 0 to 21.

We will start in the next section by presenting the literature
related to the CGC dataset, then we will give the details of
our pipeline. The third section will give the details of our
temporal segmentation approach. Section 4 will present our
action recognition and grouping strategy. Experiments and
results will be shown in section 5 and conclusion in the end.

2. RELATED WORKS

We analyse each of the existing solutions related to our
context on two levels: their Temporal Segmentation (TS) so-
lution and their approach for action recognition. Afterwards,
a proposition of an improved approach is presented.

TS: A first family of solutions used a heuristic derived
analysis for the TS purpose. Peng et al. [4] searched for the
most frequented hand-joint position using a 100x100 grid.
Then, they extracted any motion with a position further than
a threshold T . Liang et al. [5] proposed a similar solution
that compares between the left and right hand joint-motion
and simultaneously decides about the dominant one.
Another family of solutions were derived from the dynamic
programming approach. Whereas dynamic time warping
has been widely applied in the past years [2], more recent
works focused on the use of conditional random fields [6] and
Markov random fields [7].
A last solutions family used binary classifiers to extract ac-
tion regions. Evangelidis et al. [8] used a Support Vector
Machines (SVM) classifier related to a joint energy measure.
Similarly, Neverova et al. [9] exploited the state-of-art win-
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ning Deep Neural Network (DNN) classifier to extract their
motion segments. Finally, a solution related to this work and
combining the heuristic analysis with SVM classification has
been proposed in [10].

Recognition: The CGC 2014 winning team [9] based
their contribution on a multi-scale-DNN classifiers fusion
operating at frame level. They learned from a combination
of depth, RGB and a rich joint description. Similar DNN de-
rived architectures were also used in [11, 12]. In these works,
the depth and RGB features were automatically generated
within the DNN.
Different works focused on the use of hand-crafted features
in combination with SVM classifiers. A joint-only-solution
based on the joint-quadruplet descriptor was proposed in [8].
Another solution focusing on the RGB video streams and
using the state of the art winning dense descriptor [13] was
proposed in [4]. The authors produced a ’super vector’ that
received a Gaussian mixture model representation and later
a linear SVM classification. A tentative to exploit all the
existing modalities was proposed by Liang et al. [5] through
a motion-trail descriptor. Although the solution had a recog-
nition performance of 92.8%, its Jaccard index measure has
been lower [1, 5].
Finally, a variety of approaches were proposed for different
purposes. Monnier et al. [14] had the advantage of presenting
the fastest 2-hour-learning classifier based on a multi-scale
boosting-oriented description. Other solutions focused on
the use of random forests [15] and extremely randomised
trees [9] for their baselines. A common pre-processing stage
found in most approaches is related to the identification of
the left/right dominant hand in motion.

Approach proposition: The analysis of the presented
works shows that a small portion of them focused on the
efficient combination of all of depth, mask, RGB and joint
modalities together. In addition, none of the works focused on
the use of the facial data. Theoretically, the more modalities
we use, if combined using the right strategy, the better perfor-
mances we get. We propose in this paper a complementary
combination of all of the existing modalities. We also add the
facial data to produce a richer hand-crafted feature descrip-
tion ready for SVM classification. The details of our solution
represented in Fig. 1 are going to be discussed hereafter.

3. TEMPORAL SEGMENTATION

The TS approach used in this work is similar to the one we
presented in [10] with improvements relative to the introduc-
tion of the pairwise distances, the feature selection and learn-
ing label configuration. Here we rapidly review the existing
processing then detail the newly introduced ones.

Joint Augmented Context: As the joints convey suffi-
cient information about the existence of motion, we rely on
this unique modality for the TS purpose. Our interest goes
into the 11 upper-body joints. As they come with inherent

noise and variable sizes, we start by filtering noisy behaviours
using a mean filter on the time (t) axis, then translate to the
hip-center JC position and normalise the skeletal lengths to
the unit size using an automatically determined scaling factor
(S). The stabilised and normalised 3D joints Ji, i ∈ [1..11]
produce our first 33 features (3x11) as in (1):

Jix,y,z(t) = (J i
x,y,z(t)− JC

x,y,z(t))× Sx,y,z(t) (1)

The extracted features produce a shape-context-like aug-
mented representation [16]. We start by concatenating the
joint’s pairwise distance vectors given by (2):

pwDist =‖ Jix,y,z − Jjx,y,z ‖ , with i 6= j (2)

In addition, we recuperate the quaternion angles Q informa-
tion offered within the CGC dataset and composed of 4 values
[qw, qx, qy, qz] per joint. Finally, we extract 66 features rela-
tive to temporal gradients δ and δ2 of first and second order
as in (3) and (4) respectively:

δi(t) = (Jix,y,z(t+ 1)− Jix,y,z(t− 1)) (3)

δi2(t) = Jix,y,z(t+ 2)− 2Jix,y,z(t) + Jix,y,z(t− 2) (4)

TS feature optimisation: The generated representation
contains a feature vector of 264 values that encapsulate all
the useful information about the pose and temporal motion
development. In order to select the pertinent vectors, we
have applied the rapid feature selection approach suggested
by Vervidis et al. [17] over our CGC 2014 based features.
It measures each feature’s pertinence by computing the Cor-
rect Classification Rate (CCR) of a naive Bayesian classifier.
The details about the Sequential Floating Forward Selection
(SFFS) strategy employed can be found in [17]. The gener-
ated feature vector out of this stage contains 251 descriptors.

Ground truth label extension: Similar to the approaches
[4] and [5], we compare the JLH and JRH left-and-right
hand 2D joints positions towards an anchor point (the JC hip-
centre joint position in our case) to find motion-segments.
Our heuristic analysis conditioned by a threshold τ outputs:{

1 if ((JLH
x,y − JCx,y) > τ and (JRH

x,y − JCx,y) > τ)

0 elsewhere

The obtained motion segments are used only to enrich the
ground truth motion label positions passed to our SVM linear
classifier. This step ensures a better inter-class variability be-
tween the used features.

TS feature classification: Following the approach pre-
sented in [10], we have used a concatenation of 5 consecu-
tive frame descriptors as a unique, per frame, feature vector.
This configuration has allowed better action separation and
robustness towards empty-joint frames. The obtained 1255-
feature vector, coupled with the enriched ground truth binary
labels obtained fro the previous step, allowed the learning of a
linear SVM classifier. Its classification frame-wise decisions
produced our TS through motion/non-motion distinction.
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4. ACTIONS RECOGNITION AND GROUPING

We present in this section the different features used, then we
detail our frame labelling and gesture recognition strategy.

4.1. Feature multi-modal representation

The features used for the action recognition stage combine the
joint descriptor presented in the previous section with the fea-
tures extracted from the RGB, mask and depth video streams.
Compared to similar works related to the CGC context, we
extract our features from the hand regions but we also add ad-
ditional descriptors relative to the face region. An overview
of the used features is presented in Fig.2. In what follows, we
give the details of the extracted additional learning data.

Colour HOG (CHOG): From the RGB video streams,
we extract the HOG features relative to both left and right
hands in addition to the face. The bounding boxes of 64x64
are extracted from the stabilised 2D joint positions and the
left hand image is flipped to make it similar in aspect with
the right one. This step is useful for a later dominant hand
analysis. Each bounding box is rescaled to 48x48 from which
8 gradient orientations are extracted using 4 sub-cells. This
operation produces 3 vectors where each one has 32 values.

Depth Motion Histograms (DMoHist): For the depth
modality, we first subtract the background by multiplying the
depth pixels with those of the available mask, then we com-
pute the motion difference ∆(t) between any (t + 1) and
(t − 1) sets of frames. Using the stabilised 2D joints posi-
tions, we extract 3 bounding boxes of 64x64 relative to the
hands and face. After flipping the left hand, each region is
downscaled to a 4x4-resolution grid. This process generates
a 48-bin histogram of depth differences relative to our DMo-
Hist descriptor given by (5):

∆i(t) = (di(t+1)×mi(t+1))−(di(t−1)×mi(t−1)) (5)

where i ∈ [1..16] is the downsized bloc index, d(t) and m(t)
are respectively the depth and mask of frame t.

Feature representation: For both depth and RGB hand-
relative features, we apply an additional processing step re-
lated to the identification of the dominant hand in motion. As
a given action can be performed by any of the hands, we en-
sure that dominant hand features are placed first in the feature
vector passed to classification. This allows the classifier to
easily and robustly find decision boundaries. For this purpose,
we compute, for every action of N frames, the 3D cumulated
trajectories of both left and right hand joints using (6):

D(Jix,y,z) =

N−1∑
1

|Jix,y,z(t+ 1)− Jix,y,z(t)| (6)

In case D(JLH
x,y,z) > D(JRH

x,y,z), we swap the features’ order.
The analysis of the feature pertinence, using the SFFS solu-
tion presented in section 3, has proved the necessity of all
features in disposal for better classification performances.

(a) Joint augmented context (b) Face and hand CHOG

(c) Face and hand masked-depth motion histograms

Fig. 2: Feature extracted from the different input modalities

4.2. Label classification and grouping strategy

The goal of this process is to generate unique labels for the
extracted TS regions by regrouping single-frame labels.

Label learning: During the learning stage, we have used
an updated version of the groundd truth. We have generated
an augmented sequence of frame labels containing, in addi-
tion to the labels 1 to 20 relative to the vocabulary, label 0
for non-motion and label 21 for non-vocabulary actions to
make a total of 22 labels. This labelling entry has allowed
us to further improve the segmentation using the generated 0
labels. Furthermore, any action segment identified with the
extra label 21 has been automatically rejected.
For label recognition, we have trained a linear SVM classifier
using a concatenation of 251 joint-based features with 96
CHOGs and 48 DMoHist ones. All the obtained 395 features
have been synchronised and normalised to zero mean and
unit variance.

Action extraction and grouping: In order to produce
unique action labels for any given sequence of extracted
frames, we have permitted frame-wise action recognition,
and then applied label grouping and extraction. This choice
has enabled our classifier to learn from a richer descriptor
population compared to the bag of words representation.
As presented in Algorithm 1, we have extracted, for every ac-
tion sequence s, the different actions using our TS approach
and generated their frame-wise labels. If a given action was
larger than a threshold nf1 (determined from the exhaustive
analysis of all learning-action lengths), we further segmented
it into coherent consecutive label segments.
As a given action presents variable labels at its borders (start-
ing and ending at rest positions), we have extended the ob-
tained segments by nf2 frames. The final decision about the
global label for all considered action-frames has been deter-
mined by the most occurring label within the middle frames
delimited by nf3 as detailed in Algorithm 1.
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Algorithm 1: Segment labelling strategy
Input: Ls,a labels for sequence s and action a

TSs,a action border couples (starta, enda)

Output: Ls global labels within the sequence s

for each test sequence s do
Extract action list a borders
for each action a do

if (length(Ls,a) > nf1) then
// too long action

Extract consecutive labels sub-actions asub

for each sub-action asub do
nf2← round(length(asub)/20)

Enlarge asub by nf2 frames

Update action list a borders and labels

for all new actions a do
//Action global-label decision

nf3← round(length(Ls,a)/6)

Extract middle sub-labels Lsub delimited by nf3

Add most occurring label inside Lsub to Ls

5. EXPERIMENTS

We present in what follows the configuration set and perfor-
mance of the separate processing stages, then their combined
evaluation using the mean Jaccard index.

CGC dataset: The CGC 2014 is a multi-actor public
dataset containing motion streams captured using kinect sen-
sor for 1 person at a time. Each actor is asked to arbitrarily
realise 20 kinds of sign language actions relative to the Italian
vocabulary. The performances are hand based with resting
poses, but the streams may contain challenging unknown
or consecutive un-separated ones. The CGC 2014 offers 3
sub-datasets used for learning, validation and test evaluation.
Each one contains data streams relative to the joints, depth,
mask and RGB in addition to the ground truth label files.
Figure 3 gives an idea about the CGC 2014 dataset contents.

Temporal segmentation performance: We show in
Fig.4a the development of the CCR using the SFFS feature
selection criterion. This step accelerated our models learning
time and improved their performance with small percentiles.
Using 1 frame or 5 frames feature configurations, we obtained
similar classification performances near 92.13% and an area
under curve near 0.964. But, the second configuration has
been adopted as is allowed a more separative behaviour, spe-
cially in continuous action cases. The observed performance
for the binary SVM classifier is reported in Fig.4b.

Action classifier performance: The evaluation of our
classifier trained on 22 labels using enabled us to obtain an
average recognition rate of 81.01%. 1 shows example CCR
results for a selection of video sequences relative to the test
set. It shows the contribution of the grouping stage to the
overall recognition quality. The comparison with other clas-

Fig. 3: The first row shows samples of actors and the actions
viene qui, messi daccordo, sei furbo and cosa ai combinato
respectively. The second row illustrates consecutively the
color, depth, mask and joints modalities in our dataset.
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Fig. 4: a- The CCR improvement using the naive Bayesian
classifier for feature selection. b- The 5-frame TS classifier
presents a useful ROC area under curve improvement com-
pared to the 1-frame base one.

sifiers learned using different sets of 20 or 21 labels proved
the superiority of the 22-label SVM model. In Tab.2, we
present a reduced representation of the confusion matrix rel-
ative to our used classifier.

Approach evaluation: To evaluate our solution, we
used the Jaccard index measure as presented in [1]. It permits
the evaluation of both action positions and label exactitude as
shown in (7):

Jaccard(A,B)s,n =
As,n ∩Bs,n

As,n ∪Bs,n
(7)

where As,n is the obtained action with name n for a sequence
s and Bs,n is the ground truth. Using this measure, the evalu-
ation of classifier without facial data generates a Jaccard dis-
tance of 0.5667. After adding the facial data extracted from
the depth and RGB modalities, the Jaccard distance obtained
reaches 0.6180. These performances prove the effectiveness
of our assumption concerning the importance of the facial
data for action recognition.
The analysis of the separate label performances showed that
our extra descriptors where mainly useful for the 15 CGC
one-handed actions where there is more contact between the
hand and the face region. Thus, our richer description allowed
a better SVM classification of those actions.
Compared to the state of the art, and though we have not used
deep neural learning architectures, our solution still proves its
competitiveness and can be further improved using multiple
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modalities/body-parts classifiers fusion. Table 3 positions our
overall performance within the state of the art.

6. CONCLUSION

We have presented in this paper an approach that allows
the extraction and recognition of actions from continuous
streams of multi-modal inputs. Our solution first applies a
temporal segmentation using the SVM classification of an
augmented joints data representation. Afterwards, it gradu-
ally adds features relative to the RGB and depth modalities
with an awareness to the dominant hand and face regions. It
classifies frame-by-frame the labels then applies a grouping
strategy in order to produce coherent segment labels.
Compared to the state of the art, we have proved the contri-
bution of the facial data and obtained a competitive ranking
using the Jaccard index measure. Our method could be further
improved by applying multi-modal and multi-scale decisions
fusion through multiple classifier families. These potential
perspectives are already in progress.
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