
NUMERICAL APPROXIMATIONS FOR SPEEDING UP MCMC INFERENCE IN THE

INFINITE RELATIONAL MODEL

Mikkel N. Schmidt and Kristoffer Jon Albers

Cognitive Systems, DTU Compute

Technical University of Denmark

Richard Petersens Plads, DTU Bldg. 321.

2800 Lyngby, Denmark.

ABSTRACT

The infinite relational model (IRM) is a powerful model for

discovering clusters in complex networks; however, the com-

putational speed of Markov chain Monte Carlo inference in

the model can be a limiting factor when analyzing large net-

works. We investigate how using numerical approximations

of the log-Gamma function in evaluating the likelihood of the

IRM can improve the computational speed of MCMC infer-

ence, and how it affects the performance of the model. Us-

ing an ensemble of networks generated from the IRM, we

compare three approximations in terms of their generaliza-

tion performance measured on test data. We demonstrate that

the computational time for MCMC inference can be reduced

by a factor of two without affecting the performance, making

it worthwhile in practical situations when on a computational

budget.

Index Terms— Nonparametric Bayesian modeling, Infi-

nite Relational Model, Numerical approximation.

1. INTRODUCTION

A common approach to modeling the structure in complex

network data is to cluster the nodes of the network into groups

which have similar structural properties. Discovering groups

of nodes which connect to other nodes in a similar fashion

is useful for unsupervised, explorative analysis of complex

networks. Using non-parametric Bayesian models, one can

find cluster structure which is statistically salient and learn

the apropriate number of clusters at the same time.

Many different non-parametric Bayesian models of com-

plex networks exist in the literature. The arguably simplest

model is the so-called infinite relational model (IRM) [1–3],

which is a non-parametric Bayesian extension of the stochas-

tic blockmodel [4, 5]. Since exact inference in the IRM is

intractable for networks with more than a few nodes, the clus-

tering is typically learned using approximate inference tech-

niques such as Markov chain Monte Carlo (MCMC) [6], or

variational Bayes [7].

When analyzing very large complex networks, the com-

putational speed of the inference procedure can become an

issue [8]. There are, at least, four different ways in which one

might consider speeding up the inference procedure when

performing cluster analysis of complex networks. i) The

model can be simplified in a way to permit analytic solu-

tions to part of the problem or in other ways achieve faster

inference. ii) Approximate inference algorithms with a better

speed-accuracy trade-off can be employed. iii) Computa-

tional optimizations such as parallelization, vectorization,

and lookup tables can be implemented. iv) Numerical ap-

proximations can be computed at a lower precision.

In this paper we investigate how low-precision numerical

approximations can be used to speed up MCMC inference in

the infinite relational model. We examine how changes in the

numerical precision affects the inferred clustering structure.

In particular we test different numeric approximations to the

evaluation of the log-gamma function, which consitutes the

majority of the work in a Gibbs sampler for the IRM.

2. THE INFINITE RELATIONAL MODEL

The IRM extends the stochastic blockmodel, by relying on a

nonparametric prior over partitions to flexibly allow the num-

ber of clusters in the model to be learned from the data. This

allows the model to adapt to the size and complexity of the

data.

Restrict the discussion to the modeling of simple unipar-

tite networks, the IRM can be formulated as the following

generative process,

z|α ∼ CRP(α), (1)

θk,ℓ|a, b ∼ Beta(a, b), (2)

Ai,j |θ, z ∼ Bernoulli(θzi,zj), (3)

whereAi,j is a binary variable indicating whether or not there

exists a link between node i and j. The prior for the cluster

assignment, z is a Chinese restaurant process (CRP) governed

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 2831

by the concentration parameter α,

p(z|α) =
Γ(α)αK

Γ(α+N)

K
∏

k=1

Γ(mk), (4)

where N is the number of nodes, K is the number of clusters,

and mk is the number of nodes in cluster k. The probabil-

ity of observing a link between two nodes i and j, follows a

Bernoulli distribution, depending only on z and the parame-

ters θk,ℓ which specifies the link probability between nodes

in the two clusters k and ℓ, that i and j are assigned to. A

Beta distribution with parameters a and b is used as a prior

for these link probabilities,

p(θk,ℓ|a, b) =
θa−1
k,ℓ (1− θk,ℓ)

b−1

B(a, b)
. (5)

Due to the conjugacy of the Bernoulli likelihood and Beta

prior, the parameters θ can be analytically marginalized yield-

ing the following likelihood,

p(A|z, a, b) =

K
∏

k=1

K
∏

ℓ=k+1

B(mk,ℓ + a, m̄k,ℓ + b)

B(a, b)
, (6)

where mk,ℓ and m̄k,ℓ denote the number of links and non-

links between nodes in cluster k and ℓ, and B denotes the

Beta function,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (7)

In the following we will keep α constant and assume improper

flat priors over a and b.

2.1. Computations for a Gibbs sampler

The computations required to implement a Gibbs sampler for

the cluster assignments z can be found by considering the

change in the likelihood (and prior) when moving a node to

each of the existing clusters or to a new cluster. Reassigning

node n to the cluster k will change the likelihood by the factor

∏

ℓ

B(m
\n
k,ℓ + rn,ℓ + a, m̄

\n
k,ℓ + nℓ − rn,ℓ + b)

B(m
\n
k,ℓ + a, m̄

\n
k,ℓ + b)

, (8)

where the count statistics m
\n
k,ℓ and m̄

\n
k,ℓ are the number of

links and non-links between cluster k and ℓ, ignoring node

n, and rn,ℓ is the number of links between n and all nodes in

cluster ℓ (see [3] for details). The count statistics for links and

non-links between clusters can be kept and updated, instead

of recomputed for each Gibbs iteration, and thus the required

computations for implementing the Gibbs sampler is domi-

nated by evaluating the Beta function.

In a practical implementation, computations will be per-

formed in the log domain in order to ensure numeric stabil-

ity. Calculating the logarithm of the Beta function is therefore

the central operation for evaluating the likelihood within the

Gibbs sampler. Thus, it is important to have efficient means

for computing the logarithm of the Gamma function, in order

to efficiently compute the logarithm of the Beta function,

log B(x, y) = log Γ(x) + log Γ(y)− log Γ(x+ y). (9)

2.2. Computational optimization

In some situations, computing the log-Gamma function can

be completely avoided by computational optimization. From

Eq. (8) it is evident, that if a and b are constant, the log-

Gamma function need only be evaluated at integer steps (I +
a, I + b, and I + a + b, for integer I). Thus, it might be

practical to simply precompute a large lookup table of log-

Gamma values. However, depending on the data, the required

lookup table might be impractically large, and if a and b are

allowed to vary, computing a large lookup table before each

Gibbs sweep is not practical.

2.3. Approximation by maximization

The reason that the Beta function arises is the analytical

marginalization of θ. The joint distribution of θ and the data

for a single block (all links and non-links between nodes in

cluster k and ℓ) is given by

p(Ak,ℓ, θ|z, a, b) =
θm+a−1(1− θ)m̄+b−1

B(a, b)
, (10)

where, to simplify the exposition, we have omitted the k, ℓ

subscripts in the parameter and count statistics. Marginalizing

θ yields the term B(m + a, m̄ + b). A crude approximation

is to replace the marginalization by plugging in the maximum

a-posteriori (MAP) estimate of θ, which yields

(m+ a− 1)m+a−1(m̄+ b− 1)m̄+b−1

(n+ a+ b− 2)n+a+b−2
. (11)

Taking the logarithm and comparing with Eq. (9) we see that

the MAP-plugin estimate corresponds exactly to approximat-

ing the log-Gamma function using Stirling’s approximation

(the variant for the factorial function), log n! = log Γ(n) ≈
n log(n) − n. This gives some understanding as to what

happens algorithmically when approximating the log-Gamma

function in this manner.

2.4. Directly approximating the log-Gamma function

Many well-known approximations to the log-Gamma func-

tion exist, having different trade-off between computational

complexity and precision (see Fig. 1). One of the simplest is

Stirling’s approximation, given by

log Γ(x) ≈ 1
2 log(2π) + (x− 1

2) log(x)− x. (12)

23rd European Signal Processing Conference (EUSIPCO)

2832

Stirling’s approximation is relatively fast to compute, as it

only involves a single logarithm and a multiplication (disre-

garding additions and computing the constant in advance).

Stirling’s approximation yields an asymptotically accurate

approximation, but is not very precise for small values of its

argument.

We have discovered a very similar approximation with the

same computational complexity,

log Γ(x) ≈ 1 + (x− 2 + 1
log(2)) log(x)− x. (13)

This approximation is not an asymptotic formula, but it has

better precision for small values, x < 4, and thus a better

worst case error. As we have not been able to find this ap-

proximation in the literature, we refer to it in the following as

Schmidt’s approximation.

Gosper’s approximation,

log Γ(x) ≈ 1 + 1
2 log([2x− 5

3]π)

+ (x− 1) log(x− 1)− x, (14)

involving two logarithms and two multiplications, yields bet-

ter asymptotic behavior but is still very imprecise for low val-

ues.

Lanczos’ family of approximations [9] include the partic-

ularly interesting γ = 1.5 approximation with only two terms,

which we refer to as Lanczos 1.5,

log Γ(x) ≈ 1
2 log(2π) + (x+ 1

2) log(x+ 1)

− (x+ 1) + log(c0 +
c1
x
), (15)

where c0 and c1 are constants. It involves two logarithms,

one multiplication, and one division but yields a very good

precision also for small values, having a relative error of no

more than 2.4·10−4 [9]. By increasing the number of terms in

the Lanczos’ approximation to N (requiring two logarithms,

one multiplication and N divisions) the log-Gamma function

can be computed to arbitrary precision.

2.5. Approximating the logarithm

Since the discussed approximations of the log-Gamma func-

tions still require the computation of one or more logarithms,

which itself requires evaluating some series expansion, noth-

ing much appears to be gained. However, the logarithm can be

approximated very cheaply. In most computer systems, float-

ing point numbers are represented by a sign (S), a mantissa

(M), and an exponent (E),

x = (−1)S ·M · 2E , (16)

where 0.5 ≤M ≤ 1. For positive x, the logarithm is given as

log(x) = log(M) + log2(e)
−1E. (17)

R
e

la
ti
v
e

 e
rr

o
r

10 -15

10 -10

10 -5

10 0

Log-gamma function approximation error

x

10 0 10 1 10 2 10 3

A
b

s
o

lu
te

 e
rr

o
r

10 -15

10 -10

10 -5

10 0

Stirling

Gosper

Schmidt

Lanczos 1.5

Lanczos 4

Lanczos 6

Fig. 1. Relative and absolute error in approximating log Γ(x)
using various methods.

Thus, we need only one multiplication and the computation

of the logarithm of the mantissa. Since the mantissa by def-

inition is between one half and one, its logarithm can be ap-

proximated very efficiently.

Classical expansions, such as the rational expansion

log(x) ≈ 2

(

r +
r3

3

)

, r =
x− 1

x+ 1
, (18)

and the Taylor series (at a)

log(x) ≈ log(a) +
x− a

a
−

(x− a)2

2a2
+−

(x− a)3

3a3
− · · · ,

(19)

are not particularly precise when using a low order (see Fig 2).

Approximating the logarithm direcly using lookup table is

also not very precise, even for quite large tables. However,

creating a lookup table of Taylor expansions yields very fast

and precise approximations. For example, using a table with

1024 first order Taylor approximations yield a relative error

below 10−5 and requires only one lookup and one division.

Preferably, the division can be changed to a lookup and a mul-

tiplication by storing precomputed values of 1
a

.

The number of elements in the lookup table can be de-

cided in advance, and by keeping the lookup table small

enough, the entire is likely to fit the CPU cache at runtime,

avoiding expensive access to the main memory.

23rd European Signal Processing Conference (EUSIPCO)

2833

x

0.5 0.6 0.7 0.8 0.9 1

R
e

la
ti
v
e

 e
rr

o
r

10 -15

10 -10

10 -5

10 0
Logarithm approximation error

3rd order rational

6th order Taylor

Lookup

Lookup 1st order Taylor

Lookup 2nd order Taylor

Lookup 3rd order Taylor

Fig. 2. Relative error in approximating log(x). The Taylor

series shown is expanded around a = 1, and all lookup tables

are of size 1024.

3. EXPERIMENTAL EVALUATION

To examine the influence of different approximation strate-

gies in the IRM, we conducted an empirical evaluation of the

performance of the model on a set of generated networks. We

created 1000 random networks sampled from the IRM with

50 nodes, and parameters a = b = α = 1. For each of the

1000 networks we generated z and θ from the prior and then

sampled two network realizations, using one set for training

and one set for testing.

To evaluate and compare the influence of the numeric ap-

proximations on the performance of IRM, the model was run

on the same data with three different ways of approximating

the log-Gamma function as well as with the log-Gamma com-

puted to machine precision. In all approximations we com-

puted logarithms using a length 1024 lookup table of first or-

der Taylor expansions.

For each network, the model was fitted using 10,000

Gibbs sweeps over the clustering z interleaved with 100,000

Metropolis-Hastings (MH) updates of a and b. We repeatedly

conducted 10 Gibbs sweeps followed by 100 MH updates,

thinning the MCMC sample by a factor of 10. The proposal

distribution for the MH update was a Normal distribution

with standard deviation 0.1.

To compare the generalization performance, we computed

the posterior mean log-likelihood averaged over the 1000 test

networks. For each iteration number, we averaged over all

previous MCMC samples in order to evaluate the test log-

likelihood as a function of the number of iterations (see Fig-

ure 3.)

Iteration

50 100 250 500 1000 2500 5000 10000

L
o
g
-l
ik

e
lih

o
o
d

-652

-651

-650

-649

-648

-647

-646
Mean predictive log likelihood

Exact

Lanczos 1.5

Schmidt

Stirling

Fig. 3. Average test log-likelihood of the inferred model as

a function of the number of iterations (Gibbs sweeps) of the

MCMC sampler.

E
x
a
c
t

L
a
n
c
z
o
s
 1

.5

S
c
h
m

id
t

S
ti
rl
in

g

S
e
c
o
n
d
s

0

2

4

6
Run-time

E
x
a
c
t

L
a
n
c
z
o
s
 1

.5

S
c
h
m

id
t

S
ti
rl
in

g

C
lu

s
te

rs

0

2

4

6
Number of clusters

Fig. 4. Performance of the model using the different approx-

imations, in terms of the average computation time and esti-

mated number of clusters.

We recorded only the time it took to conduct the Gibbs

sweeps, disregarding time for loading data, conducting MH

updates, and storing intermediate results etc.

3.1. Results

Figure 3 shows that the performance of the Lanczos 1.5 ap-

proximation is indistinguishable from the exact computation.

The performance of Schmidt’s approximation is close but sig-

nificantly worse, and Stirling’s approximation performs much

worse.

Figure 4 shows the run-time as well as the number of clus-

ters discovered. For comparison, we note that the average

number of clusters in the ensemble of networks used for train-

ing and test is αψ(α + n) − ψ(α) ≈ 4.49. As expected, the

three approximations are significantly faster than the machine

precision computations: Lanczos 1.5 is around 2 times faster,

and Schmidt is around 3 times faster. Although Stirling’s ap-

23rd European Signal Processing Conference (EUSIPCO)

2834

proximation has the same complexity as Schmidt’s, it runs

slower: This can be explained by examining the number of

clusters discovered by the different algorithms. While Lanc-

zos 1.5 and Schmidt find almost exactly the same number of

clusters as the exact computations, Stirlings approximation

leads the inference procedure to erroneously discover more

clusters which in turn impacts the computation time, making

Stirlings approximation both less accurate and slower.

4. CONCLUSIONS

Introducing numerical approximation in evaluating the likeli-

hood of a Bayesian model will influence the inference. In non

parametric models, the inferred model complexity depends on

the complexity of the data. Hence, introducing numerical ap-

proximations will likely affect the inferred complexity of the

model making it difficult to assess the repercussions of the

approximation compared to parametric models.

In our experiments we observed that the inferred number

of components in the IRM depends on the chosen approxi-

mation of the log-Gamma function. Stirling’s approximation

is very imprecise for small values of its arguments, and us-

ing this approximation introduces bias in the model, which

turns out to have a significant influence on the performance of

the model: The MCMC procedure converges, but to solutions

with a lower test likelihood and with notably more clusters.

The proposed Schmidt’s approximation is more precise in the

low range, and though it does not appear to overestimate the

number of components it converges to a lower test likelihood

than the exact computation. The Lanczos 1.5 approximation

on the other hand appears to yield results indistinguishable

from the exact computation at around half the computational

cost.

There appear to be no reason not to use the Lanczos 1.5

approximation in practical applications of IRM analyses,

when one is on a tight computational budget. If one is willing

to accept some error in approximation, Schmidt’s approxima-

tion is to be preferred over Stirling’s approximation.

In a practical implementation it is likely to be beneficial

to use a hybrid approach, e.g. using a Lanczos approxima-

tion for small values, while relying on Gosper’s approxima-

tion (for better precision) and/or Stirling’s approximation (for

lower computation complexity) for larger values. As men-

tioned, alternative to the approximations discussed here, one

should also consider if it is more efficient to simply precom-

pute a lookup table of the needed log-Gamma value: This,

however, also depends on the data—both on the size of the

network, the number of links, and the number of inferred clus-

ters.

Acknowledgement: This project was supported by the

Lundbeck Foundation, grant nr. R105-9813.

REFERENCES

[1] Charles Kemp, Joshua B. Tenenbaum, Thomas L. Grif-

fiths, Takeshi Yamada, and Naonori Ueda, “Learning

systems of concepts with an infinite relational model,”

Cognitive Science, vol. 21, no. 1, pp. 381, 2006.

[2] Zhao Xu, Volker Tresp, Kai Yu, and Hans-Peter Kriegel,

“Infinite Hidden Relational Models,” in Proceedings of

the 22nd International Conference on Uncertainity in Ar-

tificial Intelligence, 2006.

[3] Mikkel N. Schmidt and Morten Mørup, “Nonparametric

Bayesian modeling of complex networks: An introduc-

tion,” 2013.

[4] Tom A. B. Snijders and Krzysztof Nowicki, “Estima-

tion and prediction for stochastic blockmodels for graphs

with latent block structure,” Journal of Classification,

vol. 14, no. 1, pp. 75–100, 1997.

[5] Paul W. Holland, Kathryn B. Laskey, and Samuel Lein-

hardt, “Stochastic blockmodels: First steps,” Social Net-

works, vol. 5, no. 2, pp. 109–137, 1983.

[6] Kristoffer Jon Albers, Andreas Leon Aagard Moth,

Morten Mørup, and Mikkel N. Schmidt, “Large scale

inference in the Infinite Relational Model: Gibbs sam-

pling is not enough,” in IEEE International Workshop on

Machine Learning for Signal Processing, MLSP, 2013.

[7] Katsuhiko Ishiguro, Issei Sato, and Naonori Ueda, “Col-

lapsed Variational Bayes Inference of Infinite Relational

Model,” arXiv:1409.4757v1, 2014.

[8] Karen S. Ambrosen, Tue Herlau, Tim Dyrby, Mikkel N.

Schmidt, and Morten Mørup, “Comparing Structural

Brain Connectivity by the Infinite Relational Model,” in

Pattern Recognition in NeuroImaging (PRNI), 2014.

[9] Cornelius Lanczos, “A Precision Approximation of the

Gamma Function,” Journal of the Society for Industrial

and Applied Mathematics, vol. 1, pp. 86–96, 1964.

23rd European Signal Processing Conference (EUSIPCO)

2835

