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ABSTRACT
Music influences the affective states of its listeners. For this
reason, music is extensively used in various media forms to
enhance and induce emotional feeling. Automatic evaluation
of affect from music can have impact on music design and can
also aid further analysis of music. In this work, we present a
novel scheme for affect prediction in music using a Boosted

Ensemble of Single feature Filters (BESiF) model. Given a
set of frame-wise features, the BESiF model predicts the af-
fective rating as a weighted sum of filtered feature values. The
BESiF model improves the Signal to Noise Ratio for arousal
and valence prediction by a factor of 1.92 and 1.06, respec-
tively, over the best baseline method. This performance is
achieved using only 14 signal features for arousal (16 for va-
lence). We further analyze the transformation of one of the
features selected towards arousal prediction.

Index Terms— Affect, Arousal, Valence, Emotion in mu-
sic, Boosting

1. INTRODUCTION

In recent years, considerable amount of research has gone
into improving automatic understanding and indexing of mu-
sic signals. This effort has been partly led by the data del-
uge in digital music and partly by the large number of new
applications in multimedia such as information retrieval, au-
tomatic transcription and music fingerprinting. A majority of
these applications require classifying songs into meaningful
categories as the first step. Typically, grouping is done on the
basis of genre or melody. However, in the context of a music
recommendation system, it is desirable for these categories
to be aligned with the listener’s music preference or mood.
Thus, studying the affective component in music signal is as
important as studying its structural aspects.

Music has been shown to possess the ability to influence
the emotional state of its listeners [1–3]. For example, con-
sider the elaborate use of background soundtracks in movies
to support the narrative being carried through speech and
video. In movies, music plays a complementary role to
the cinematography and dialog delivery [4]. In fact, previ-
ous studies have found that music in movies often plays a
more important role in conveying emotion compared to other
modalities [5]. Owing to its positive emotional influence,
music has also been used for therapeutic purposes [6, 7].

The ability of music to affect human’s emotion state has
led to considerable interest in the study of affective features
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and prediction models for music emotion recognition. Pre-
vious studies have focused on predicting both static and dy-
namic emotion labels from music [8–10]. These emotion
labels are typically measured along affective dimensions of
arousal and valence, and collected from multiple human an-
notators [11, 12]. Predicting dynamic emotion ratings in mu-
sic is considerably more difficult (as opposed to predicting
a static overall rating) as it involves accounting for tempo-
ral evolution of emotion with music signal. The Emotion in
Music Challenge at the 2014 Mediaeval Workshop [13] led to
several investigations towards capturing the emotional con-
tent in music using low level frame-wise features. Some of
the successful schemes involved using a recurrent neural net-
work [14], multi-level regression systems [15] as well as state
space models [16]. These methods perform well in predicting
the emotional dimensions from low level features. However,
they fail to explain the temporal evolution of emotion and its
relation to the features. Moreover, all the above systems use a
large number of features to predict the affective ratings, ren-
dering feature analysis difficult. To overcome these shortcom-
ings, we propose a gradient boosting-based [17] Boosted En-

semble of Single feature Filter (BESiF) method. Given a set
of frame-wise features, the BESiF model sequentially learns
filters on a selected set of features. The model later performs
a weighted combination of the filtered feature values to pro-
vide the prediction for affect ratings. We obtain Signal to
Noise Ratio (SNR) improvement by a factor of 1.92 and 1.06
for arousal and valence prediction when compared to the next
best baseline algorithm. The BESiF model uses a small set
of 14/16 features for arousal/valence prediction when com-
pared to the available 6000+ features used by the baseline al-
gorithms. We analyze the output from one of the filters for
arousal prediction and interpret the transformation of feature
values which contribute towards the final prediction.

In the next section we describe the database used in exper-
iments, followed by the details of affect prediction in Section
3. Section 4 presents the results and conclusions are presented
in Section 5.

2. DATABASE

We use the music dataset provided in the Emotion in Music

Challenge at the 2014 Mediaeval Workshop [13] to evaluate
the BESiF algorithm. The data set consists of 1744 songs
from different musical genres. 45 second clips were selected
from each song in the dataset and assigned emotion labels by
at least 10 annotators (at a rate of 2 frames/second). More
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Fig. 1. Average arousal-valence ratings in each music genre

details about the data set and annotation process can be found
in [18].

To further motivate our study of emotion in music, we
analyze the relation between genre and emotional variability
present in this database. We plot the average emotion ratings
per genre in Figure 1. We observe that the annotated emotion
ratings follow intuitive trends along high level music cate-
gories such as genres. As an example, notice how rock music
displays high arousal, while country music is high valence.
Classical music on the other hand has both low arousal and
low valence. This suggests that a relation exists between the
style of music and its emotional content. This further encour-
ages automatic prediction of affect in music with potential
to impact music design, recommendation and understanding
music perception.

For the purpose of prediction, we use the mean dynamic
annotations for arousal-valence as the gold truth in accor-
dance with the challenge task [13]. Moreover, the first 15
seconds of annotations were excluded from consideration,
to allow the dynamic annotations to stabilize. We use a set
of 6000+ Opensmile [19] features supplied during the chal-
lenge [18]. These features are functionals of various spectral
and frequency properties of music signals (Mel Frequency
Bank, Fundamental frequency etc.), extracted at the rate of 2
frames/second (same as annotation frame rate.) Out of 1744
songs in the dataset, we use a split of 744, 300 and 700 songs
as the train, development and test set respectively. The 744
files for training are as provided during the challenge. The
development and testing set are randomly selected from a
separate set of 1000 files. In the next section, we describe our
training methodology to predict the affective ratings using the
provided feature set.

3. AFFECT PREDICTION

Through our experiments, we not only aim to maximize the
prediction quality, but also understand the relation between
these low level signal features and the affective dimension. In
this work, we focus on minimizing the mean squared error
between predicted and true affect ratings.

We denote the true affect ratings (arousal/valence) for
a file f with N frames (arousal/valence) as the row vector

t(f) = [tf1 , .., t
f
n, .., t

f
N ] and the corresponding time series of

feature vectors as X(f) = [xf
1 , ..,x

f
n, ..,x

f
N ], where x

f
n is

a D-dimensional feature vector. The dth row of X(f) repre-
sents the values over time for the dth feature and we represent

that as xd(f) = [xf
d,1, ..., x

f
d,N ]. A function M(xf

n) maps

the feature vector x
f
n to the one dimensional affect rating.

We represent the time series vector [M(xf
1 ), ...,M(xf

N )] ob-

tained after mapping as M
(

X(f)
)

. The mean square error
Lf between the mapped and true ratings as obtained for the
file f is shown in equation 1 (|| ||2 represents the L2 norm).

Lf =
∣

∣

∣

∣t(f)−M
(

X(f)
)∣

∣

∣

∣

2

2
=

N
∑

n=1

(

tfn −M(xn
f )
)2

(1)

Given the set of files in the training set, we learn the func-
tion M by optimizing the sum of squared error losses, L, as
defined below.

L =
∑

f∈Training set

1

2
Lf =

∑

f∈Training set

1
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(

X(f)
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∣

∣

2

2
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One can assume any functional form for M before op-
timizing the cost function L. For the problem of interest,
several schemes were proposed during the Mediaeval chal-
lenge [13]. However, these schemes are either too simple to
capture the complex relationship between the acoustic fea-
tures and the abstract affective space (e.g. linear regression)
or are difficult to interpret (e.g. Recurrent Neural Networks).
In this work, we present a new gradient boosting [17] based
Boosted Ensemble of Single-feature Filters, which overcomes
the shortcomings of both these categories of models. The BE-
SiF model is an ensemble of filters trained sequentially on
one feature at a time and the final prediction is given as the
weighted sum of the filter outputs. We provide the BESiF
model training algorithm below along with a brief description
of the gradient boosting method.

3.0.1. Boosted Ensemble of Single feature Filters (BESiF)

The BESiF model consists of an ensemble of filters op-
erating over the feature time series, learnt using gradient
boosting. Gradient boosting is a general technique for learn-
ing an ensemble of weak learners applicable in the cases of
arbitrarily differentiable loss functions (e.g. mean squared
error loss). We represent an ensemble of K weak learners

{h̃1, h̃2, ..., h̃K} as MK , where the prediction Mk(Xf ) is
given as shown below.

MK(Xf ) =
K
∑

k=0

h̃k (3)

The base learners {h̃1, h̃2, ..., h̃K} are learnt sequentially.

The first base learner (h̃0) is initialized to be a constant model
obtained by solving the optimization problem shown in (4). 1̄
represents a vector of ones of the size same as the target affect
variable t(f).

h̃0 = γ0 = argmin
γ0

∑

f∈training set

∣

∣

∣

∣t(f)− γ0 × 1̄

∣

∣

∣

∣

2

2
(4)
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Subsequently, new regressors h̃k are added by solving the
following optimization.

h̃k = argmin
hk

∑

f∈training set

∣
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∣

∣t(f)−Mk(X(f))
∣

∣

∣

∣

2

2

= argmin
hk
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f∈training set

∣

∣

∣
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(

Mk−1(X(f)) + hk

)

∣

∣

∣

∣

2

2

(5)

However the optimization problem in equation 5 is not
easy to solve and, in practice optimization is performed itera-
tively using the steepest descent method [20]. This is equiv-
alent to fitting base learners to a set of pseudo residuals (de-
fined for the current problem in equation 6) and learning the
weights of base learners using a one-dimensional optimiza-
tion. For more details on gradient boosting please refer to
[17]. In our case, we chose the set of base learners to be Finite
Impulse Response (FIR) filters operating on a single feature.
We chose this feature probabilistically, with the probability
of selection proportional to its absolute correlation with the
pseudo residuals. We summarize the training algorithm for
the BESiF model below.
Training algorithm for BESiF models:

• Initialize M0 with a constant model h̃0 (equation 4).
• For k = 1 to K

– Computing the pseudo-residuals rk(f) = [rfk,1, ..., r
f
k,N ]

for each file in the training set.

rk(f) = −
∂
(

1
2

∣

∣

∣

∣t(f)−M
(

X(f)
)
∣

∣

∣

∣

2

2

)

∂M
(

X(f)
)

∣

∣

∣

∣

at M(X(f))=
Mk(X(f))

= t(f)−Mk

(

X(f)
)

(6)

– Randomly selecting a feature: In the next step, we ran-
domly select one of the D features. The probability of
selecting a feature is proportional to the absolute corre-
lation of feature with rk(f). Let d be index of the se-
lected feature with values for the file f represented as

xd(f) = [xf
d,1, ..., x

f
d,N ].

– Learning a filter to predict the pseudo residuals using the
selected feature: Given the filter length L, we learn the
filter coefficients wk = {w1

k, .., w
L
k } to predict residu-

als. These filter coefficients are convolved with the se-
lected feature to obtain with residuals as the target out-
puts. Coefficients wk are obtained by solving the opti-
mization problem mentioned in equation 8. 〈w ∗ xd(f)〉
represents the convolution of the selected feature with the
filter coefficients and is denoted by hk(f).

hk(f) = 〈w ∗ xd(f)〉 (7)

wk = argmin
w

∑

f∈training set

∣

∣

∣

∣rk(f)− 〈w ∗ xd(f)〉
∣

∣

∣

∣

2

2
(8)

– Computing weights of the base learners: After obtaining
the filter coefficients, we compute the scalar γk to weigh
the filter outputs hk(f). We solve the following one di-
mensional problem to obtain γk using backtracking algo-
rithm [21].

Model SNR (σ2
signal/σ

2
error)

Arousal Valence

Linear Regression + smoothing 1.39 1.37
Greedy Linear Regression + smoothing 1.27 1.21
Least squares boost + smoothing 1.47 1.44
BESiF 2.83 1.53

Energy in signal (σ2
signal) 0.11 0.06

Table 1. SNR values for affect rating prediction using the
baseline and the proposed BESiF models.

γk = argmin
γ

∑

f∈
training set

∣

∣

∣

∣t(f)−
(

Mk−1(X(f)) + γ × hk(f)
)

∣

∣

∣

∣

2

2

(9)

– Updating the model: After obtaining wk and γk, the pre-
dicted outputs for a file f are obtained as

Mk(Xf ) = Mk−1(Xf ) + h̃k(f) =

Mk−1(Xf ) +
(

γk × hk(f)
) (10)

• End For

4. EXPERIMENTS AND DISCUSSION

We use the proposed BESiF model to predict the arousal and
valence ratings from the low level signal features. As the
function M

(

X(f)
)

can assume several functional forms, we
chose three other methods as baseline models for comparison.
The first baseline method performs linear regression followed
by a smoothing operation as was proposed in our previous
work [18]. The other two baselines involve techniques such
as sequential selection of features and boosting, like the BE-
SiF model. We describe these methods in detail below.
1. Linear regressor + smoothing: In this method, we use lin-
ear regression on the entire feature set followed by a smooth-
ing operation to predict the affective ratings. Our analysis in
the past work [18] showed that the affective signals evolve
rather smoothly. The linear regressor computes the affective
rating using the provided features and smoothing is used to
incorporate local temporal context. The smoothing operation
is fundamentally a moving average operation where output
at a frame is recomputed as an average of predictions over a
local window. This operation also helps to remove any high
frequency noise added during regression.
2. Greedy linear regressor + smoothing: This method is same
as the previous baseline method, except for a greedy selec-
tion of a few features for regression. Similar to the BESiF
training algorithm, features are added sequentially based on
their correlation with the residual at each iteration. However,
note that after addition of every new feature, the algorithm
re-optimizes the regression coefficients for each selected fea-
ture. This may lead to the problems associated with curse of

dimensionality and high computation cost. The total number
of features added are tuned on the development set. BESiF
model does not suffer from this problem as filter coefficients
are determined only for a single feature at a time. The final
outputs after regression are again smoothed using a moving
average filter.
3. Least squares boost + smoothing: Least squares boost [22]
is another class of boosting algorithm used to optimize
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Fig. 2. RMSE (σerror) of BESiF model on the test set against
the number of base classifiers. The red point denotes the count
of base filters chosen based on development set.

squared error loss functions. However, this algorithm uses all
the features at every iteration to predict the residuals. We use
a regression tree [23] as our base learner in this case. Note
that unlike BESiF, the regression trees can not account for the
temporal relationship between the residuals and the feature
time series. We again smooth the outputs using a moving
average filter to account for smooth temporal evolution.

We present the Signal to Noise Ratio (SNR) for affective
rating predictions using the baseline methods and the BESiF
model in Table 1. SNR is computed as the ratio of energy
in the true arousal/valence signal (σ2

signal) and energy in the

prediction error (σ2
error). The length L of the FIR filters for

BESiF model and the length of moving average filters for the
baseline methods are tuned on the development set. The num-
ber of base classifiers for BESiF and the least squares boost
models are also tuned on the development set.

4.1. Discussion

From the results in Table 1, we observe that a substantial gain
in arousal using the BESiF model is achieved over all other
baselines. In our previous work [18], we showed that the
smoothing operation added context from neighboring win-
dows, thus improving the prediction. However the regression
design was decoupled from smoothing and the choice of fil-
ter during smoothing was ad-hoc. In the BESiF model, we
overcome this drawback by incorporating filter design within
the regression framework. Our base learners, i.e., the single-
feature filters not only learn the mapping from the features
to the affective dimension, but also incorporate the tempo-
ral context into account during prediction. We observe that
the performance is particularly poor for greedy linear regres-
sion. We performed further investigation into this system and
observed that even a backward feature selection (sequential
removal of features starting from all features [24]) leads to
degradation in performance. This suggests that removal of
any feature leads to a degradation in performance of linear
regression. The least squares boost algorithm in closest to
BESiF in terms of performance. In general, boosting algo-
rithms lead to strong regressors, therefore the better perfor-
mance. However, decoupling of regressor design and smooth-
ing again leads to poorer performance for least squares boost
when compared to the BESiF model.

We plot the Root Mean Square Error (RMSE, σerror) of
the BESiF model on the test set against the number of base
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Fig. 3. (a) Target arousal values, (b) filtered feature values and
(c) raw feature values for a selected file in the testing set.

filters in Figure 2. We observe that the performance of BESiF
model saturates approximately within 15 single feature filters
for both valence and arousal. This observation is particularly
interesting from the point of view of understanding the rela-
tion between the low level features and affective dimensions.
We observed that 15 (out of 16) and 13 (out of 14) features
selected for arousal and valence respectively are spectral fea-
tures (Mel Frequency Cepstral Coefficients, Mel Filter Bank
energies [19]) with a fundamental frequency (F0) statistic fea-
ture appearing once in both the cases. This reflects that most
of the emotional information in music is associated with the
evolution of spectral characteristics of the music. Since the fi-
nal prediction is a weighted sum of the filtered feature values,
one can also analyze a feature of interest and its contribution
to the final prediction. For instance, we plot the target arousal
rating, a selected feature (mean of absolute values for an MFB
coefficient), and filtered feature values in Figure 3. We ob-
serve that the filtered feature values follow the same trend as
the target values (despite the scales being different). More-
over, the filtered values are smoother than the feature itself,
indicating removal of high frequency noise after the filtering
operation. This is consistent with the premise of smooth evo-
lution of affective ratings.

5. CONCLUSION

Music signals have been shown to carry emotional informa-
tion. In this work, we present a novel BESiF scheme to pre-
dict the affective dimension of arousal and valence from low
level audio signal features in music. This scheme is designed
not only to better predict the affective ratings, but also to add
insights and interpretability to the prediction process. We
show that the BESiF system beats several comparable base-
line methods, using only a handful of features. We interpret
patterns as observed in a feature time series after filtering and
compare it to the target value.

In the future, we aim to predict the affective dimensions
jointly to allow understanding of joint dynamics between va-
lence and arousal. With availability of more data, one could
also analyze the relation of system parameters (e.g. filters,
base learner weights) with music categories such as genres.
Further improvement in prediction is also possible by using
better feature selection techniques (e.g. using dynamic pro-
gramming [25]) and filter design methods.
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