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ABSTRACT
In this paper, we present a variational Bayesian approach in
the wavelet domain for linear image reconstruction problems.
This approach is based on a Gaussian Scale Mixture prior and
an improved variational Bayesian approximation method. Its
main advantages are that it is unsupervised and can be used
to solve various linear inverse problems. We show the good
performance of our approach through comparisons with state
of the art approaches on a deconvolution problem.

Index Terms— unsupervised approach, wavelet trans-
form, variational Bayesian, GSM, Generalized Gaussian

1. INTRODUCTION

Most image reconstruction tasks can be considered as ill-
posed linear inverse problems. The resolution of such prob-
lems generally relies on the introduction of additional infor-
mation thanks to regularization terms or prior distributions
either in the spatial or in a transform domain (e.g. Fourier,
wavelet, ...). It is popular to treat image reconstruction prob-
lems in the wavelet domain as it provides sparse representa-
tions for a large class of images.

As a result, sparsity prior information on wavelet coeffi-
cients can be introduced to regularize ill-posed inverse prob-
lems. To do this, L1 norm regularization has been used exten-
sively, e.g. [1]. However, a main difficulty encountered is a
proper choice of hyperparameters which control the trade-off
between data fidelity and regularization terms. Thanks to the
work in [2], for denoising problems, hyperparameters can be
determined by minimizing the Stein’s unbiased risk estimate
(SURE) [1]. SURE has also been generalized (GSURE) [3–6]
for general linear inverse problems. Another way to solve
this problem is to work in the Bayesian framework where we
jointly estimate hyperparameters and unknown coefficients
by assigning prior distributions to both of them [7].

In this paper, we choose to work in the Bayesian frame-
work. To obtain a more accurate estimation, rather than using
orthogonal wavelet transforms, we consider a dictionary de-
composition over an union of wavelet bases [8]. Concerning

the prior for unknown coefficients, we consider a Gaussian
Scale Mixture (GSM) model [9,10] which encompasses many
heavy tailed priors, e.g. Generalized Gaussian (GG), which
has shown considerable success in wavelet domain image re-
constructions [11, 12]. Moreover, in order to adapt sparsity
degrees and relative importance of prior information to differ-
ent subbands, we take different hyperparameters (shape and
scale parameters) for GSM priors in different subbands.

Nevertheless, due to the introduction of hyperpriors, the
involved posterior distribution is too complicated for the com-
putation of classical estimators such as the Maximum A Poste-
rior (MAP) and the Posterior Mean (PM). To tackle this prob-
lem efficiently, rather than using MCMC approaches [12], we
resort to variational Bayesian methods [13–15] which pro-
vide an approximate posterior distribution of simpler form
than the original one. The PM estimator can be more easily
derived from this approximate distribution. Furthermore, to
get a more efficient method, we adopt here an improved vari-
ational Bayesian algorithm recently proposed in [15] which
can be well adapted to large dimensional problems.

The rest of this paper is organized as follows: we present
the involved Bayesian model in Section 2; Section 3 is de-
voted to the introduction of our variational Bayesian approach
whereas algorithm evaluation through simulation results on a
deconvolution problem is given in Section 4; Finally, we draw
our conclusions in Section 5.

2. BAYESIAN MODELING

The unknown image x ∈ RP can be represented through a
dictionary expansion as x = Du where D ∈ RP×N and
u ∈ RN denotes the associated coefficients. In the case of an
overcomplete dictionary, e.g. the union of several orthonor-
mal bases, we have N > P . We consider in the following a
linear forward model in the transformed domain:

y = ADu + n, (1)

where y ∈ RM denotes the data, the operator A ∈ RM×P
is assumed to be known and n is a Gaussian white noise,
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n ∼ N (0, γ−1
n I), with γn as the inverse of the noise vari-

ance. Therefore p(y|u, γn) = N (ADu, γ−1
n I).

Concerning the prior for the coefficients u, we consider
a GSM. In fact, all the coefficients do not exhibit the same
statistical characteristics. To take this fact into account, we
divide the coefficients into L subbands and we assign GSM
priors with different parameters to coefficients in different
subbands. By using (Il)l=1,...,L to denote sets of indices of
coefficients in the lth subband, the prior distribution of u can
be written as

p(u|γp, τ ) =

L∏
l=1

∏
i∈Il

p(ui|γlp, τ l)

=

L∏
l=1

∏
i∈Il

∫
R
N (ui|0, (ziγlp)−1)p(zi|τ l)dzi

where z = (z1, . . . , zN ) is the vector of hidden variables
whose distributions are given by p(zi|τ l) with parameters
denoted by τ l. We note that p(zi|τ l) depends on the ex-
pression of p(ui|γlp, τ l). Moreover, in the above equation,
γp=[γ1

p , . . . , γ
L
p ] are scale parameters of our GSM prior.

In total, three types of hyperparameters are involved in the
above Bayesian formulation: γn, γp and τ = (τ 1, . . . , τL).
Generally, τ are shape parameters of the GSM prior which
determine the type of prior information introduced. As a re-
sult, we choose to fix τ according to our prior knowledge.
However, we estimate γn and γp since they determine a com-
promise between data fidelity and fidelity to the prior infor-
mation.

For γn and (γlp)l=1,...,L, Jeffreys’ non-informative priors
are assigned. Using the Bayes’ rule, we can derive the poste-
rior distribution of the unknown parameters given data

p(u, z, γn,γp|y,τ ) ∝ γnM/2 exp

[
−γn‖y −ADu‖2

2

]
×

L∏
l=1

∏
i∈Il

√
ziγlp exp

[
−
γlp
2
ziu

2
i

]
p(zi|τ l)

×γ−1
n

L∏
l=1

(γlp)
−1. (2)

3. VARIATIONAL BAYESIAN APPROACHES

In the following, we introduce a variable Θ = {u, z, γn,γp}
which includes all the parameters to be estimated. The esti-
mation of these parameters is based on the joint posterior dis-
tribution given by (2). However, this distribution is intractable
since its partition function is difficult to calculate in practice.
To tackle this problem, we resort to variational Bayesian ap-
proximations (VBA) which generate a separable approxima-
tion qΘ of the true posterior distribution p(Θ|y, τ ) by mini-
mizing the Kullback-Leibler divergence between them. As-
suming that qΘ(Θ) =

∏
i qi(Θi), classical VBA gives the

following analytic solution (see [13] for details)

qi(Θi) ∝ exp
(
〈log p(y,Θ)〉∏

j 6=i qj(Θj)

)
, (3)

where p(y,Θ) is the joint distribution which is explicitly
known. As shown by (3), each distribution qi depends on all
the other distributions qj with j different from i. In practice,
this dependence implies the use of iterative methods such
as the Gauss-Seidel one, which are not very efficient to it-
eratively approximate qΘ. Recently in a prior work [14], an
efficient exponentiated gradient based VBA method has been
proposed. This method has been further developed in [15],
leading to a more efficient Memory Gradient subspace based
variational Bayesian approximation (MG-VBA) method. The
MG-VBA integrates the subspace optimization principle and
adopts the following updating equation:

qk+1
i (Θi) =Kk(sk)qki (Θi)

(
〈log p(y,Θ)〉∏

j 6=i q
k
j (Θj)

qki (Θi)

)sk1

×

(
qki (Θi)

qk−1
i (Θi)

)sk2
, (4)

where sk = [sk1 , s
k
2 ] is the two-dimensional algorithm step

size. In this work, we adopt the approximate optimal step size
proposed in [15] thanks to the second order Taylor expansion
of the objective criterion. We can see from (4) that qk+1

i does
not depend on qk+1

j with j different from i, but depends on∏
j q

k
j which is known from the kth iteration. As a result, all

the (qk+1
i )i=1,...,N are updated in parallel.

Concerning the separability assumption, we consider here
a total separability given as follows

qΘ(Θ) =

(
L∏
l=1

∏
i∈Il

qui(ui)qzi(zi)

)
qγn(γn)

L∏
l=1

qγlp(γlp).

In fact, since p(z, γn,γp|u,y, τ ) is separable, the classi-
cal VBA yields directly explicit solutions for (qzj )j=1,...,N ,
qγn and (qγlp)l=1,...,L. Nevertheless, this is not the case for
(qui)i=1,...,N . Therefore, we adopt the MG-VBA for the op-
timization of (qui)i=1,...,N .

3.1. Determination of qui
Since a GSM prior is used, the conditional distribution
p(ui|zi, γlp) is a Gaussian one, which is conjugate with the
Gaussian likelihood p(y|u, γn). Therefore, the optimal ap-
proximate distributions (qui)i=1,...,N belong to a Gaussian
family. As a result, we take

qkui(ui) = N
(
(mk)i, (σ

2
k)i
)
.

In this case, the optimization of (qui)i=1,...,N is performed
by optimizing their parameters: mean mk and variance σ2

k.
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Using (4), the following update equations have been obtained
(details can be found in [15].):

σ2
k+1 =

[
1

σ2
k

+ s1

(
1

σ2
r

− 1

σ2
k

)
+ s2

(
1

σ2
k

− 1

σ2
k−1

)]−1

,

mk+1 =σ2
k+1

[
mk

σ2
k

+ s1

(
mr

σ2
r

−mk

σ2
k

)
+ s2

(
mk

σ2
k

−mk−1

σ2
k−1

)]
.

In the above equations, we omit all the indications of vector
component (·)i for the sake of clarity. Moreover, σ2

r and mr

are two intermediate variables updated using the two follow-
ing equations:(

σ2
r

)
i

=
[
〈γn〉k (DTATAD)(i,i) +

〈
γlp
〉k 〈zi〉k]−1

, (5)

(mr)i =
(
σ2
r

)
i
〈γn〉k

[
DTATy −DTATADmk (6)

+ diag(DTATAD) ◦mk

]
i

where 〈w〉k = Eqkw(w), diag(M) is a vector containing the
diagonal elements of M and ◦ denotes the Hadamard prod-
uct between two vectors. Actually, the variables (σ2

r)i and
(mr)i are determined by the auxiliary function qri (Θi) ∝
exp

(
〈log p(y,Θ)〉∏

j 6=i q
k
j (Θj)

)
.

3.2. Determination of qzi
For the hidden variables (zi)i=1,...,N , using (3), we can obtain

qk+1
zi (zi) ∝ exp

(
1

2
ln(zi)−

〈γlp〉k

2
zi〈u2

i 〉k + ln p(zi|τ l)
)

∝
√
zip(zi|τ l) exp

(
−
〈γlp〉k

2
〈u2
i 〉kzi

)
=p(zi|

√
〈u2
i 〉k, 〈γ

l
p〉k, τ l). (7)

We can see that qzi depends on p(zi|τ l). However, for most
distributions in the GSM family, we do not know the explicit
expression of p(zi|τ l). As a result, the explicit expression of
qzi is not known either. Nevertheless, our objective is not to
obtain qzi but qui . As noted in [16] and also shown by (5), to
determine qui , it is enough to know the expectation of qzi .

In this case, the main challenge is to determine the expec-
tation of qzi without knowing its explicit expression. Since
p(ui|γlp, τ l) belongs to the GSM family, we can obtain (see
[16] for details)

p′(ui|γlp, τ l) =
∂

∂ui

∫ ∞
0

p(ui|zi, γlp)p(zi|τ l)dzi

= −γlpuip(ui|γlp, τ l)Ep(zi|ui,γlp,τ l){zi},

which allows us to get

Ep(zi|ui,γlp,τ l){zi} = −
p′(ui|γlp, τ l)

γlpuip(ui|γlp, τ l)
. (8)

Combining (7) and (8), we obtain the expectation

〈zi〉k+1 =−
p′(ui|γlp, τ l)

γlpuip(ui|γlp, τ l)

∣∣∣∣
ui=
√
〈u2
i 〉k,γp=〈γlp〉k

. (9)

In this work, we consider also one special case of the
GSM family: the Generalized Gaussian (GG) distribution
whose density is given by:

GG(ui|γlp, τ l) =

√
γlpτ

l

2Γ(1/τ l)
e−|
√
γlpui|

τl

(10)

where τ l > 0 is the shape parameter of the GG distribution.
With a GG prior, the expectation given by (9) becomes

〈zi〉k+1 = τ l
[
〈γlp〉k

(
(mk+1)2

i + (σ2
k+1)i

)] τl
2 −1

. (11)

3.3. Determination of qγn and qγlp
Thanks to the conjugate priors for the hyperparameters, the
optimal approximate distributions qγn and (qγlp)l=1,...,L are
Gamma ones. As a result, we take

qkγn(γn) = G(βk, ξk),

qkγlp(γlp) = G(ηkl , ζ
k
l ).

Therefore, the optimization of qγn and qγlp can be performed
by updating their parameters. Using (3), we can obtain
the following update equations for parameters of qγn and
(qγlp)l=1,...,L:

βk+1 =
M

2
= β

ξk+1 =
1

2
‖y−ADmk+1‖2+

1

2

N∑
i=1

(DTATAD)(i,i)(σ
2
k+1)i

ηk+1
l =

card{Il}
2

= ηl

ζk+1
l =

1

2

∑
i∈Il

〈zi〉k+1
[
(mk+1)2

i + (σ2
k+1)i

]
,

where card{Il} is the number of elements in the set Il.
The PM estimator is used for each parameter. However,

we reconstruct the dictionary coefficients u instead of the un-
known image x. As a result, we perform the following re-
construction operation to get an estimation of the unknown
image: x̂ = Dm̂.

4. EXPERIMENTAL RESULTS

The proposed approach is evaluated through an application to
a deconvolution problem which is covered by the linear for-
ward model (1). In deconvolution problems, A corresponds

23rd European Signal Processing Conference (EUSIPCO)

2214



to a convolution operator. In the following, we present simu-
lation results obtained by the proposed approach and compare
the results with two existing approaches: a SURE-LET ap-
proach in wavelet domain [4], and a supervised total variation
(TV) regularized least-squares deconvolution approach in the
image domain which computes the MAP estimate thanks to
a primal-dual algorithm [17]. For the TV based approach,
the hyperparameter is manually tuned to obtain the best result
which has the highest PSNR.

In our simulations, we used Symlet-8 wavelets over three
decomposition levels, leading to 10 subbands. Moreover,
we used a frame constructed by the union of nine translated
wavelet bases which allows reducing blocky artifacts caused
by dyadic shifts underlying the orthogonal wavelet transform.

(a)

(b) (c)

(d) (e)

Fig. 1. (a) Original image, (b) blurred noisy image, restored
ones with (c) SURE-LET [4] (d) TV (e) proposed approach.

The application was based on synthetic data generated
from two images, Lena and Cameraman. A 9×9 uniform
blur was applied to original images and Gaussian noises were
added to the blurred ones resulting in a SNR equal to 40 dB.

The proposed approach was implemented with the fol-
lowing initializations: the wavelet transform of the observed

data as the mean and 100 as the variance of dictionary co-
efficients. From these initial values, we compute the initial-
ization of γn using updating equations given in Section 3.3
and (γlp)l=1,...,10 are initialized by the same value. Concern-
ing the shape parameters of the GG priors, 2, which gives a
Gaussian distribution, was assigned to the GG prior for coarse
approximation coefficients since they are generally not sparse
and [1 0.9 0.8] were assigned to the GG priors for detail co-
efficients from the coarsest to the finest level to enforce higher
degrees of sparsity for coefficients at finer scales.

We show in Fig. 1 (a) the original Lena image and in
Fig. 1 (b) its blurred version. The reconstructions obtained
by SURE-LET [4], the TV based approach and the proposed
one are shown in Fig. 1 (c), (d) and (e), respectively. We can
see that the result of the proposed approach (Fig. 1 (e)) is of
slightly better quality than that of SURE-LET (Fig. 1 (c)).
Moreover, by comparing Fig. 1 (d) and (e), we can see that
details of Lena are better reconstructed by the proposed ap-
proach than the TV based one, e.g. the brim of the hat, tex-
tures and the feather on the hat (upper left corner of Lena
image) of Fig. 1 (e) are sharper than those in Fig. 1 (d).

Table 1. PSNR (dB) OBTAINED BY SURE-LET, TV BASED
APPROACH AND THE PROPOSED APPROACH.

SURE-LET TV proposed
Lena 29.06 28.19 29.75

Cameraman 26.56 27.41 28.86

We show in Table 1 PSNR of reconstructions obtained by
the three approaches. The highest PSNR in each case is high-
lighted in bold. We can see that in both cases, it is the pro-
posed approach that gives the best PSNR. For Lena, the pro-
posed approach gives 29.75 dB which is 0.69 dB higher than
SURE-LET and 1.56 dB higher than TV. For Cameraman, our
approach gives 28.86 dB which is 2.3 dB larger than SURE-
LET and 1.45 dB higher than TV. However, concerning the
execution time, the proposed approach is slower than SURE-
LET. For Lena, SURE-LET takes 95 seconds whereas the
proposed approach takes 273 seconds. Moreover, for Cam-
eraman, SURE-LET takes 44 seconds whereas the proposed
approach takes 136 seconds. Our approach jointly estimate
parameters and hyperparameters in an iterative way which
leads to better results but requires more computation time.

In our approach, hyperparameters were determined auto-
matically. For the inverse noise variance γn, our approach
gives 2.14× 105 for Lena which is close to the true value:
2.26×105, and gives 1.08×105 for Cameraman, which is also
close to the true value: 1.09×105. We show also in Table 2
converged values of the scale parameters (γlp)l=1,...,10 of the
GG prior for Lena. From (2) we can see that larger values of
γlp lead to greater importance of the sparse prior information.
In Table 2, we can see that the value of γlp is larger for coef-
ficients at finer scales: the γlp of scale 1 is larger than that of

23rd European Signal Processing Conference (EUSIPCO)

2215



Table 2. VALUES OF γlp ESTIMATED BY OUR APPROACH.
FROM THE COARSEST TO THE FINEST SCALE: 3→1.

Approxi
-mation Scale Horizontal Vertical Diagonal

γlp 0.03
3 21.21 44.70 65.33
2 252.19 642.47 342.41
1 2.25×103 4.46×103 530.57

scale 2 which is larger than that of scale 3, which means that
we give much more importance on the sparsity prior informa-
tion for finer scale coefficients. This result is coherent with
the fact that coefficients of finer scales are sparser than those
of coarser scales. Furthermore, γlp for coarse approximation
coefficients is small, which means that the coarse approxima-
tion coefficients are mainly determined by the data. For Cam-
eraman, we do not show the estimation of γlp since it exhibits
a similar performance to Lena.

We need to note that another advantage of the proposed
approach is that it can be easily used to treat other linear in-
verse problems, e.g. tomographic reconstruction problems.

5. CONCLUSION

In this paper, by using variational Bayesian approximations,
we proposed an unsupervised Bayesian approach based on a
prior distribution of the GSM family in a transform domain
for linear inverse problems. The first main advantage of this
approach is that a large number of hyperparameters can be es-
timated automatically. The second advantage is that it can be
used to solve various linear inverse problems. Experimental
results showed that the proposed approach can well estimate
the hyperparameters and gives better reconstructions than
classical approaches. Furthermore, the proposed approach
can be easily applied to large dimensional problems.
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