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ABSTRACT

In this paper we propose a robust and efficient method to
utilize the spatial information provided by a distributed mi-
crophone array for acoustic scene analysis. In our approach,
similarly to the cepstrum, which is widely used as a spectral
feature, the logarithm of the amplitude in multichannel obser-
vation is converted to a feature vector by a linear orthogonal
transformation. Then, the spatial information of the acous-
tic scene is represented in the spatial feature space. This ap-
proach does not require the positions of the microphones and
is not sensitive to the synchronization mismatch of channels,
both of which make the method suitable for use with a dis-
tributed microphone array. Experimental results using real-
life environmental sounds show the validity of our approach
even when a smaller feature dimension than the original one
is used.

Index Terms— Acoustic scene analysis, distributed mi-
crophone array, spatial cepstrum, symmetric microphone ar-
ray, isotropic sound field

1. INTRODUCTION

Considerable research has been conducted on media tagging,
surveillance, and automatic life-logging using an acoustic sig-
nal, and such research is referred to as acoustic scene analy-
sis or acoustic event detection [1–4]. There are many tech-
niques for analyzing acoustic scenes based on spectral fea-
tures such as the combination of mel-frequency cepstral coef-
ficients (MFCCs) and a hidden Markov model (HMM) [5, 6]
or directly utilizing spectro-temporal information [7, 8]. The
intermediate features such as a dictionary of acoustic events
[9–11] or the bases captured by the non-negative matrix fac-
torization (NMF) [12] have been also investigated. These
techniques utilize the sparsity or other constraints in spectral
or temporal domain, and represent acoustic scenes efficiently
with less feature dimensions.

In recent years, multichannel signal processing for acous-
tic scene analysis has attracted increasing attention because
of the rapid increase in the use of acoustic sensors such as

smart and wearable devices. If many microphones are dis-
tributed, they enable us to obtain spatial information, which
can be used to recognize acoustic events or acoustic scenes.

The use of position information based on source localiza-
tion is a straightforward way to use the spatial information
provided by multichannel observation. However, even in the
single-source case, source localization is not always easy in a
real environment because of background noise, reverberation,
and reflection by large obstacles such as partitions and desks.
In practical use in a distributed microphone array, the posi-
tions of microphones are not known in advance. Thus, they
have to be estimated before source localization. Moreover, an
acoustic event can include multiple sound sources, which in-
troduces other difficulties such as multiple source localization
and estimation of the number of sound sources.

In this paper we propose a robust and efficient method to
utilize the spatial information provided by a distributed mi-
crophone array for acoustic scene analysis. In our approach,
the amplitude information in multichannel observation is con-
verted to a feature vector in a similar way to the cepstrum.
Then, the spatial information of the acoustic scene is repre-
sented in the spatial feature space. This approach does not
require the positions of the microphones and is not sensitive
to the synchronization mismatch of channels, both of which
make the method suitable for use with a distributed micro-
phone array.

The rest of this paper is organized as follows. In section
2, we introduce a method to extract a spatial feature from
multichannel observation and discuss its resemblance to the
cepstrum. In section 3, we report simulated experiments on
spatial feature extraction and evaluate the proposed method
by acoustic scene analysis in a real environment. Finally in
section 4, we conclude this paper.

2. SPATIAL FEATURE
FOR ACOUSTIC SCENE ANALYSIS

Suppose that an acoustic scene is observed using N micro-
phones and let sω,τ,n be the short-time Fourier transform
(STFT) representations of a multichannel observation, where
ω, τ , and n represent the frequency, time frame, and channel
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indices, respectively. To extract spatial pattern information
steadily, we also assume that the microphone configuration is
fixed. In a distributed microphone array, synchronization over
channels is a significant issue and the phase information is
sometimes unreliable owing to the sampling frequency mis-
match. Therefore, in this paper, we focus on only amplitude
information in the STFT representation, aω,τ,n = |sω,τ,n|,
which is more robust to the sampling frequency mismatch.

2.1. Cepstrum: spectral feature

To extract spectral information, let us consider a frequency-
based log amplitude vector such as

pτ =


log ā1,τ
log ā2,τ

...
log āΩ,τ

 , (1)

where Ω is the number of frequency bins and

āω,τ =

√
1

N

∑
n

a2ω,τ,n (2)

is the average spectrogram over the channels. As another al-
ternative, the largest spectrogram components over channel
can be used for extracting spectral information as follows.

āω,τ = max
n

aω,τ,n (3)

The discrete Fourier transform (DFT) of pτ defined as

cτ = ZΩpτ (4)

is called the cepstrum, where ZΩ is the Ω × Ω DFT matrix.
Similarly to the cepstrum, the mel-frequency cepstrum coef-
ficient (MFCC) is defined using the discrete cosine transform
(DCT) for mel-frequency representation, which has been
widely used as a spectral feature. In both cases, the DFT
or DCT matrix acts as a good basis transformation for the
log amplitude information, and dimension reduction can be
performed by taking lower-order components of cτ .

2.2. Spatial cepstrum

Analogous to the definition of the cepstrum, we here consider
a channel-based log amplitude vector such as

qτ =


log ãτ,1
log ãτ,2

...
log ãτ,N

 , (5)

where

ãτ,n =

√
1

Ω

∑
ω

a2ω,τ,n (6)

is the multichannel power observation at each time frame.
In the frequency case, āω,τ represents the logarithm of

the amplitude at each subband, which is uniformly spaced on
the linear frequency or mel-frequency axis. However, in a
spatial case, especially in a distributed microphone array, the
microphones are not uniformly placed. Therefore, instead of
DFT or DCT, we apply principal component analysis (PCA).
Let Rq be the covariance matrix of qτ given by

Rq =
1

T

∑
τ

qτq
T
τ , (7)

where T is the number of time frames and T represents the
vector transpose. Because Rq is a symmetric matrix, the
eigenvalue decomposition of Rq can be represented as

Rq = EDET, (8)

where E and D are the eigenvector matrix and the diagonal
matrix in which the diagonal elements are equal to the eigen-
values in descending order, respectively.

Using E, we define the spatial feature as follows.

dτ = Eqτ (9)

According to PCA, the components of dτ are uncorrelated
with each other and we can reduce the feature dimension of
qτ without significant loss of information by utilizing only
the components whose eigenvalues are large.

If the microphone positions are circularly symmetric and
the sound field is isotropic, which means that 1) the acoustic
power is identical at all positions and 2) the cross-correlation
between two observations does not depend on the angle be-
tween their observed positions, the covariance matrix Rq is a
circular matrix and the eigenvalue matrix E can be an N ×N
DFT matrix ZN [13, 14]. Then, eq. (9) is exactly equivalent
to the definition of the cepstrum. Although this is a special
case, we hereafter call dτ the spatial cepstrum (SC) based on
this resemblance.

To calculate the SC, the positions of the microphones are
not required, enabling convenient distributed microphone ar-
ray processing. Also, owing to the resemblance to the original
cepstrum, we can apply cepstral mean normalization (CMN)
[15] to the SC to compensate for the mismatch in the micro-
phone sensitivity, as well as other techniques applicable to the
cepstrum domain [16].

Additionally, we can apply this spatial feature extraction
method at each frequency bin without average the feature and
we can consider the same approach for spectro-spatially con-
catenated observation vectors, which are included in our fu-
ture work.

3. EXPERIMENTS

3.1. Representation of spatial pattern by spatial cepstrum

We show an example of the spatial correlation of a multichan-
nel observation and a spatial pattern represented by the SC in
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Fig. 1. Microphone and sound source arrangements in simu-
lated experiment
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Fig. 2. Spatial correlation of log amplitude (left) and spa-
tial feature represented by spatial cepstrum in 3-dimensions
(right)
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Fig. 3. Spatial correlation of amplitude (left) and spatial fea-
ture represented by its principal components in 3-dimensions
(right)

a simulated experiment.
Figure 1 shows the arrangement of microphones and loud-

speakers in our experiment. In this experiment, each loud-
speaker played a fixed-length stationary 1 kHz pure tone in
order without the overlap.

Figure 2 shows the spatial correlation between channels
(left) and the spatial feature representation of each sound
source by the SC (right). For better visualization, the normal-
ized correlation such as eq. (10) is shown where r(i, j) is the
(i, j) entry of the covariance matrix of qτ,n given by eq. (7).
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Fig. 4. Microphone and sound source arrangements in experi-
ment using real-life environmental sounds

Table 1. Typical sounds in each acoustic scene

Acoustic scene Typical sound
Chatting voices, coughing
Cooking cutting, sizzling, running water, clattering dishes

Vacuuming whine of cleaner, footsteps
Dishwashing running water, clattering dishes

TV voices, music, sound effects, cheering

S(i, j) =
r(i, j)√

r(i, i)r(j, j)
(10)

The figure indicates that the SC can represent the relative
positions of sound sources without using the positions of mi-
crophones. For comparison, the spatial correlation between
channels by using the amplitude vectors without taking the
logarithm (left) and the spatial feature representation of each
sound source by the principal component (right) are shown
in Fig. 3. In this case, it appears that the relative position
is not represented accurately, and thus the distance between
sound sources #1 and #2-6 is tended to underestimate com-
pared to the distance in real space. This indicates that taking
the logarithm is reasonable for extracting the spatial pattern
in analogy with a spectrum feature.

3.2. Acoustic scene recognition using real-life environ-
mental sounds

We evaluated the performance of the SC by acoustic scene
recognition using a real-life environmental sound dataset
recorded in a living room. Twelve microphones were dis-
tributed as shown in Fig. 4 and the recorded sounds were
roughly synchronized using a trigger sound. The dataset con-
sists of 52.1 min. of recordings that involve five categories of
acoustic scenes: “chatting,” “cooking,” “vacuuming,” “wash-
ing dishes,” and “watching TV,” which are manually labeled.
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Fig. 5. Acoustic scene estimation accuracy with 1024-
dimensional cepstrum feature extracted by using largest
sound pressure over channels in terms of recall (%)
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Fig. 6. Acoustic scene estimation accuracy with 1024-
dimensional cepstrum feature extracted by using averaged
sound pressure over channels in terms of recall (%)
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Fig. 7. Acoustic scene estimation accuracy with 12-
dimensional MFCCs extracted by using largest sound pres-
sure over channels in terms of recall (%)

We randomly separated the sound dataset into 9,333 sound
clips for training and 3,162 sound clips for evaluation. The
sampling frequency was 48,000 Hz. Each acoustic scene typ-
ically included the sounds listed in Table 1, and none of the
acoustic scene overlapped with each other in all recordings.

The cepstrum, MFCCs, and SC were extracted from the
recorded sounds with respect to each sound clip. Acous-
tic scenes were then modeled and recognized using Gaus-
sian mixture models (GMMs). For calculating the cepstrum
and MFCCs, 1) selecting the largest amplitude and 2) av-
eraging the amplitudes over all channels were investigated.
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Fig. 8. Acoustic scene estimation accuracy with 12-
dimensional SC in terms of recall (%)
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Fig. 9. Acoustic scene estimation accuracy with three-
dimensional SC in terms of recall (%)

Table 2. Average estimation accuracy in terms of F-score (%)
and feature dimension

Method Feature dim. Average F-score
Cepstrum (maximum) 1024 51.3%
Cepstrum (averaged) 1024 52.0%
MFCC (maximum) 12 55.3%

Spatial cepstrum 12 70.7%
Spatial cepstrum 3 70.1%

Then a 2,048 point FFT was applied to each sound clip and
we obtained 1,024-dimensional cepstrum features and 12-
dimensional MFCCs. After calculating the cepstrum and
MFCCs, we applied CMN with respect to each channel. Each
acoustic scene was modeled by eight Gaussian components
with diagonal covariance.

Figures 5, 6, 7, 8, and 9 show confusion matrices of acous-
tic scene recognition accuracy in terms of recall. These re-
sults indicate that the spatial pattern extracted by the SC en-
ables the acoustic scene to be recognized effectively as well
as when using the cepstrum or MFCC. The results also indi-
cate that the SC is robust in the case of acoustic scenes in-
volving movement such as “vacuuming” and “cooking.” The
average F-scores and the feature dimensions are listed in Ta-
ble 2. The experimental results indicate that acoustic scenes
can be recognized precisely even when an SC with a smaller
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feature dimension than the original one is used. From these
results, we conclude that the proposed method achieves effec-
tive and efficient acoustic scene analysis by using distributed
microphone signals.

4. CONCLUSION AND FUTURE WORK

We proposed a robust and efficient method for extracting the
spatial information provided by a distributed microphone ar-
ray. Inspired by the cepstrum, we defined the spatial cepstrum
by PCA of the log amplitudes in multichannel observation and
showed that it can be equivalent to the original definition of
the cepstrum in a special case. Experimental results using
real-life environmental sounds indicated that the SC is effi-
cient for recognizing acoustic scenes precisely even when an
SC with a smaller feature dimension is used. In future work,
we will combine the spatial and spectral features and evaluate
the performance of acoustic scene analysis.
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