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ABSTRACT

In this paper, we propose a new tomographic reconstruction method,
called IOD-PVRMPP, to reconstruct 3D particle volumes from 2D
particle images provided by the Tomographic Particle Image Ve-
locimetry (Tomo-PIV) technique. Our method, based on marked
point processes (or object processes), allows to solve the problem
in a parsimonious way. It facilitates the introduction of prior knowl-
edge and solves memory problem which is inherent to voxel based
approaches used by classical tomographic reconstruction methods.
The reconstruction of a 3D particle set is obtained by minimizing an
energy function which defines the marked point process. To this aim,
we use a simulated annealing algorithm based on Reversible Jump
Markov Chain Monte Carlo (RJMCMC) method. To speed up the
convergence of the simulated annealing, we develop an initialization
method which provides the initial distribution of 3D particles. To
do that, we proceed by detecting 2D particles located in projection
images. Using synthetic data, we show that IOD-PVRMPP method
gives better results than MinLOS-MART method for different seed-
ing densities.

Index Terms— Marked Point Processes or Object Processes,
Tomography Reconstruction, Simulated Annealing, RJMCMC,
Tomo-PIV.

1. INTRODUCTION

Tomographic reconstruction techniques appeared in 1970 and have
been firstly used in the medical field. With the development of the
Tomo-PIV by Elsinga et al [1], algebraic reconstruction techniques
(ART) have been extended to the PIV field to reconstruct distribu-
tions of 3D particles in order to study complex flows. Tomo-PIV is
based on a multi-sensor recording. It consists in measuring instanta-
neously the three velocity components of a flow from the displace-
ment of the tracer particles recorded using several cameras from dif-
ferent viewing angles. Tomographic reconstruction methods are well
suited to resolve the problem of limitation in number of views, but
they are very expensive in computation time and memory storage.

Many researches in Tomo-PIV field focused on tomographic re-
construction techniques to solve the problem of computation time.
For this purpose, a study conducted by Worth and Nickels [2] yielded
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an approach named MFG (Multiplicative First Guess) for fast ob-
ject reconstruction. Atkinson and Soria [3] developed the MinLOS-
MART method to accelerate MART method (Multiplicative ART)
which is the most used algebraic technique in Tomo-PIV field [4].
Another technique to accelerate computation time is MG (multi-
grid) method conducted by Discetti and Astarita [5]. It consists in
reconstructing discretized objects with a low resolution. After iden-
tifying regions with active voxels, these regions are updated with
high resolution. Petra et al [6] investigated the mathematical proper-
ties of tomographic reconstruction on synthetic data. They work on
theoretical foundations for particle volume’s sparse representation
and showed that applying parsimonious reconstruction algorithms in
this context gives better results than classical-state-of-the-art meth-
ods such as algebraic reconstruction. On 2012, Wieneke [7] pro-
posed an algorithm called IPR (Iterative Particle Reconstruction) to
reconstruct 3D-particle locations by comparing the recorded images
with generated ones calculated from the particle distribution in the
volume. Particles in the reconstructed volume are represented by
3D-positions instead of voxel-based intensity blobs as in MART. Re-
cently, Schanz et al [8] proposed a method called Shake The Box
(STB) to track 3D particle positions. STB method produces a pre-
diction of the particle distribution of already tracked particles and
refines the found positions by an image-matching scheme. This pre-
dicted particle distribution is used as an initialization to the IPR pro-
cess to reduce iteration number.

Nevertheless, already proposed tomographic reconstruction
techniques does not sufficiently take into account the particular
shape of objects to be reconstructed. Given the size of data, the
processing time of the methods and the memory usage are still very
high. To solve these problems, a solution based on the parsimony
of particle volumes can be considered. Thus, a method to recon-
struct 3D particle volumes based on an “object” processes seems
particularly well suited [9]. Stochastic models based on marked
point processes (or object processes) have been used in various ap-
plication fields such as detection of tree crowns [10], populations of
birds [11], or road networks [9]. These models have proved their
efficiency for object extraction in large sample spaces.

This paper focuses on the reconstruction of 3D particle volumes
in large configuration spaces, formulated in marked point process re-
construction framework. We then finalize a previous work [12] by
proposing an efficient initialization method and running simulations
until realistic particle densities. It is organized as follows: in section
2, after some recalls on marked point processes, we provide the new
method, called IOD-PVRMPP (Initialization by Object Detection
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- Particle Volume Reconstruction based on Marked Point Process)
and how to simulate it. In section 3, we compare IOD-PVRMPP to
MinLOS-MART using synthetic data with different seeding densi-
ties. The focus will be on the quality of the reconstructed volumes.
In section 4, we conclude the paper and give some prospects for the
work.

2. PARTICLE VOLUME RECONSTRUCTION BASED ON
MARKED POINT PROCESS

2.1. Basics of marked point processes

In this section, we recall the basic ideas of PP (point processes) and
MPP (marked PP) [13, 14]. An MPP can be called an “object” pro-
cess (OP) when the mark define a geometric object [9] as in our case:
the objects are the particles. In the following, we will use OP for 2D
particles and MPP for 3D particles.

Let K ⊂ R3 be an observation domain with volume 0 <
ν(K) < ∞. A PP on K is a finite configuration of points
{ki ∈ K, i = 1, ..., N} such as ki 6= kj for i 6= j. To form
more complex objects, we can attach characteristics or marks to the
points. Let (M,M, νM ) the probability space which describes the
marks. A finite random configuration of marked points (or objects)
is a sample of a MPP only if the position process of objects is a PP.
Based on this definition, volume or image features are viewed as a
set of objects identified jointly by their positions in the image and
their geometrical characteristics. For a more complete presentation
of MPP, the reader is referred to [9, 15].

Our aim is to reconstruct a set of particles (2D or 3D) based on
the light energy acquired in the projections (images). Unlike classic
tomographic reconstruction methods, the objective is to obtain parti-
cles that belong to a continuous space (i.e. a position of a nD particle
belongs to Rn, n = 2 or 3). Following the elements previously re-
called, points represent center positions of nD particles and marks
provide center intensities, forms and radiuses. Thus, such configura-
tion of nD particles is given by y = {(k1,m1), ..., (kn(y),mn(y))}.
ki ∈ K and mi ∈ M , i = 1, . . . , n(y), represent the nD particle
positions and the particle marks respectively. This process provides
a naturally sparse representation of configurations of objects of in-
terest located in a volume. They allow in fact detaching from the
numerical model induced by the volume, constituted of voxels, to
better approximate the physical model.

A configuration of an OP or a MPP is classically viewed as a
sample issued from an unnormalized probability density f which is
a Gibbs distribution:

f(y|θ) ∝ exp(−U(y|θ)) (1)

with y a finite configuration of nD particles, θ a set of fixed param-
eters. The energy U(y|θ) allows us to model interactions between
particles and it’s composed of the sum of two terms: 1) a data driven
energy denoted Ud(y|θd) that reflects the adequacy between config-
urations of nD particles and the observed data and 2) an internal
energy denoted Uint(y|θint) that reflects an a priori on such config-
urations. This leads to the following expression:

U(y|θ) = Ud(y|θd) + Uint(y|θint) (2)

and θ = θd ∪ θint. Thus, for a given value of θ parameters, the most
likely configuration (with total energy equal to the global minimum)
allows the particle volume reconstruction:

ŷ = argmax
y

f(y|θ) = argmin
y

U(y|θ) (3)

The computation of the global minimum of the energy is performed
by a simulated annealing which is a stochastic method of optimiza-
tion [16, 17]. This technique is based on the simulation of a non-
homogeneous Markov Chain (see [9, 18] for example and section 3
for implementation details).

An appropriate definition of the data energy allows us to obtain
marked points (particles) that are consistent with respect to a given
observation. In our case, this energy will enable the process to con-
verge to an appropriate configuration of nD particles.

2.2. Initialization method based on object detection

In tomographic reconstruction field and specially in fluid mechanics
field where data size and particle density are very high, the initial-
ization process is a very important step that can speed up the conver-
gence of the reconstruction methods and enhance the reconstruction
quality. To compute a first estimation of the reconstructed volume,
we propose an ”Object Oriented” method called IOD (Initialization
by Object Detection) which was inspired from a 3D position recon-
struction technique named “triangulation” often used in computer
vision field. This initialization procedure represents the main contri-
bution of this paper and will be used before PVRMPP method [12],
whose aim is to obtain a 3D particle set. Let us notice that IOD can
also be used with any other tomographic reconstruction method ap-
plied to Tomo-PIV. The operating mode of this 3D particle volume
initialization method is applied to P acquired projection images and
can be realized in 3 main steps: 1) detection of 2D particles in each
projection image; 2) identification of epipolar 2D particles; 3) recon-
struction of 3D particles from 2D epipolar particles marks.

2.2.1. 1st step: 2D particles detection

To detect 2D particles in the projection images, we modify the 3D
particles reconstruction algorithm based on MPP, proposed in [12],
in 2D subspace. Like 3D particles, a 2D particle is characterized
by its intensity distribution, its size and its isotropic or anisotropic
Gaussian-shape. The data driven energy is derived from the mean
square error (MSE) between an image generated from a population
of 2D particles yi = {ζi,j}j=1,...,n(yi)

and corresponding acquired
image Ii, i = 1, . . . , P :

MSE(yi, Ii) =
∑
s∈Ii

(oi,s − pi,s)2 (4)

where oi,s is the observed value on pixel s of image Ii and pi,s the
generated value by the 2D particles configuration yi on pixel s. If
we developMSE expression with the deletion of constant terms we
can obtain the expression of a data driven energy as a sum of two
energies Ud,1(yi|θd) + Ud,2(yi|θd) defined as follows:

Ud,1(yi|θd) =
∑

ζi,j∈yi

φd,1(ζi,j)

Ud,2(yi|θd) =
∑

ζi,j∼ζi,k

φd,2(ζi,j , ζi,k)
(5)

where

φd,1(ζi,j) =
∑

s∈Ii,ζi,j→s

pζi,j→s
(
pζi,j→s − 2 oi,s

)
φd,2(ζi,j , ζi,k) =

∑
s∈Ii

2 pζi,j→s pζi,k→s
(6)

As the Gaussian spatial extension of the intensity of an object
is truncated (see Sec. 3), ζi,j → s means that ζi,j contains s ∈ Ii
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and pζi,j→s represents the intensity value generated on s by ζi,j .
When two particles contains the same pixel s, they are considered
as neighbors: ζi,j ∼ ζi,k if ∃ s ∈ Ii s.t. pζi,j→s and pζi,k→s. The
behavior of this data driven energy is quite similar to the one used
for 3D particle volume reconstruction model [12] where φd,1 acts
like a correlation operator between a particle and the values at its
position in acquired image and φd,2 penalizes particles which have
same position in acquired image.

In the proposed model, the internal energy is divided in a sum of
two terms and can be written as follows:

Uint(yi|θint) = Ue(yi|θe) + Us(yi|θs) (7)

The first term Ue(yi|θe) = −n(yi) log(β) is an energy associated
with the PP intensity in terms of number of particles n(yi) inside
a configuration. It is defined by β intensity parameter. The sec-
ond term Us(yi|θs) = −na(yi) log(γa) allows defining a Strauss
point process which belongs to the family of Marked point pro-
cesses [13,18]. When 0 ≤ γa < 1, this component penalizes aggre-
gation of 2D particles. na(yi) represents the number of neighbor re-
lationships between 2D particles in the following sense: ζi,j

S∼ ζi,k
if ||ki,j − ki,k||2 ≤ ri,j+ri,k where ri,j and ri,k are the radiuses of
ζi,j and ζi,k respectively. The value of hyper-parameter γa ∈ [0, 1]
controls the outcome of the potential function. If γa = 1, the pro-
cess defined by Uint behaves as an homogeneous Poisson PP with
intensity β. If γa ∈]0, 1[, pairs of 2D particles with distance less
than ri,j + ri,k are penalized. If γa = 0, the process forbids that
two points exist within distance ri,j + ri,k. The process is then said
to be hard core. Let us notice that γa should be chosen near 0 for a
3D process (the particules are solid then there exists theoretically no
spatial intersection) and near 1 for a 2D process (superpositions can
occur for the projections of the particles).

The proposed model is then parameterized by θ = θd ∪ θint
with θint = {β, γa}. θd is mainly defined by 2D particle model
(minimum and maximum values for their intensities and radiuses).

To limit the number of iterations and speed up the convergence
of the simulated annealing, we develop a simple initialization proce-
dure, called IRW (Iterative Random Walk), in order to propose a first
distribution of 2D particles. To this aim, one iteration of this proce-
dure is performed on 3 steps: a simple peak detection is applied to
the image which gives a set of detected 2D positions ; each posi-
tion of this set will be transformed to a 2D particle by moving the
corresponding position randomly in order to enhance its data driven
energy ; a residual image which will be used in the next iteration, is
computed between the image used for peak detection and the gener-
ated one from 2D particle set. In section 3, the number of iterations
is fixed equal to two.

2.2.2. 2nd step: epipolar 2D particles identification

Once the detection of 2D particles is completed, we apply a search
algorithm to identify epipolar 2D particles. In our case, a set of P
2D particles, which belong to their respective projections, are con-
sidered epipolars if they are located inside P 2D Boxes obtained by
the projection of a unique 3D box.
This step is carried out by decomposing the volume on 3D box sub-
spaces by following the principle of Octree structure. We start with a
1st level decomposition. Each 3D Box is projected to give P epipo-
lar 2D Boxes. A search for 2D particles inside each obtained 2D Box
is then performed. If a set of 2D epipolar particles is found, a recon-
struction procedure is realized to create an associated 3D particle in-
side the corresponding 3D Box. The level of Octree decomposition
increases if one 2D Box contains more than one 2D particle.

2.2.3. 3rd step: 3D particles reconstruction

The reconstruction quality of 3D particles is highly dependent to ro-
bustness of 2D particle detection algorithm of IOD method. The aim
of this final step of IOD method is to compute the marks of each 3D
particle which contains the intensity distribution and size (radius).
They are computed by back-projecting the P epipolar 2D particles
marks. Positions of 3D particles can be obtained by back-projecting
2D particles coordinates for known z values which represent posi-
tions on line of sight. In our case, searching for z value based on
positions of epipolar 2D particles represents a minimization prob-
lem that consists on minimizing distance between back-projection
of each 2D particle and their centroid.

2.3. Simulation of Marked Point Processes

PP and MPP (or OP) are classically simulated using RJMCMC ex-
ploiting a Metropolis-Hasting-Green (MHG) dynamic [9, 19]. This
dynamic allows to simulate a process with varying sampling spaces.
In our case, these sampling spaces are associated with configurations
with different numbers of particles. The basic moves of RJMCMC
for MPP are birth and death moves [13, 20].

In addition to these moves, a configuration can be changed by
moving positions of objects. To obtain a better position, an object in-
side the configuration is randomly chosen and new positions are ran-
domly sampled using a uniform probability inside a spherical area
around the original position. The proposed position is the one that
gives the minimal value of data driven energies.

Then, the proposed state for a population of nD particles y, is
y′ = y ∪ {ξ} for the birth case, where ξ is a randomly proposed
particle. For the death move, the proposed state is y′ = y \ {ξ},
where ξ is chosen inside y. For the translation move, the proposed
state can then be written as y′ = y\{ξ1}∪{ξ2}where ξ1 is a chosen
object inside y and ξ2 is a proposed particle randomly chosen near
ξ1.

The different propositions are accepted with probability min {1, τi},
i = B,D or TR (for Birth, Death and Translation), with τi
the MHG acceptance ratio. For each move, τi is proportional

(see [9] for complete formulas) to the ratio
f(y′|θ )
f(y|θ ) = exp {−∆U},

∆U = U (y′ |θ )−U (y |θ ), where y′ is the proposed configuration.
As we have defined a Markov object process, ∆U will only depend
on ξ and its neighbors [12]. Thus, it can be efficiently computed.

A simulated annealing can be realized by dividing Ud + Us by
a temperature T and simulating the modified process from a high
temperature T0 to a low temperature Tf . The complete algorithm
(called IOD-PVRMPP) contains the two following steps: 1) IOD
method that provides a set of 2D detected particles for each projec-
tion, i = 1, . . . , P and the initial 3D particle set computed from
the 2D particle set; 2) PVRMPP method that provides the final 3D
particle configuration (see [12] for more details).

We provide now some experimental results.

3. RESULTS

A set of synthetic volumes with associated projected images have
been generated using an image generator developed in C++ using the
SLIP library [21]. The synthetic volume size is 500 × 500 × 150.
Four projections of size 500 × 500, with image seeding density
varying from 0.0004 to 0.2 ppp (particle per pixel), are then com-
puted knowing that 0.05 ppp is the reference seeding density level
for Tomo-PIV field [1]. 2D and 3D particles are characterized by
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marks as described in section 2 and [12]. The number of 3D par-
ticles Np in synthetic volumes, generated for each seeding density
level, are varying from 100 up to 50000 particles. 1570104905
HH

HHppp Np β T0 fb ftr Nit

0.0004 100 2.66 10−6 0.025 0.50 0.50 15 103

0.0008 200 5.33 10−6 0.025 0.50 0.50 18 103

0.0020 500 1.33 10−5 0.035 0.50 0.50 24 103

0.0040 1000 2.66 10−5 0.045 0.50 0.50 50 103

0.0080 2000 5.33 10−5 0.045 0.50 0.50 13 104

0.0200 5000 1.33 10−4 0.048 0.60 0.50 55 104

0.0500 12500 3.33 10−4 0.850 0.75 0.40 81 105

0.1000 25000 6.66 10−4 0.850 0.75 0.40 25 106

0.2000 50000 1.33 10−3 0.850 0.75 0.40 32 106

Table 1. Sets of parameters used for PVRMPP experiments.
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Fig. 1. Evolution of the volume reconstruction quality Qv against
density of particles.
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Fig. 2. Evolution of percentage of number of ghost particles against
density of particles

For this experimental study, we fixed the intensity center and
the radius of all particles: the diameter size is 5 × 5 × 5 voxels for
3D particles and 3 × 3 pixels for 2D particles; the distribution of
intensities around all center positions of particles is modeled as a
multivariate isotropic Gaussian density. The calibration model is a
pinhole model, without distortions. The acquisition system is sim-
ulated with 4 cameras (P = 4): two cameras on one side with a
30◦ viewing angle; two other cameras on the other side of the vol-
ume, in a same plane [4]. For PVRMPP, a set of parameters (see
Sec. 2) has been chosen for each seeding density in order to get
a good reconstruction of 3D particle volumes (see table 1). These
choices of parameters were adopted after several simulations, try-
ing to find the best trade-off between reconstruction quality, ghost
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Fig. 3. Evolution of error position in volume against density of par-
ticles.

(a) MinLOS-MART (b) Reference (c) IOD-PVRMPP

Fig. 4. Comparison of the projections of a reconstructed particles
volume onto a camera for (a) MinLOS-MART, (b) Reference (c)
IOD-PVRMPP for 0.05 ppp seeding density level.

particles rate and computation time with regard to optimized MART
method’s robustness. In table 1, ftr corresponds to the probability
of selecting the translation move. Birth and death moves are chosen
with the probability 1− ftr , and, in a second random selection, with
the probabilities fb and fd respectively (fd = 1 − fb). γa is fixed
to 0.05. The simulated annealing algorithm is configured with an
initial temperature T0 and with a fixed final temperature Tf equal to
0.02. A classical cooling scheme has been chosen: Tt = T0 q

t with

t the current iteration, q =
(
Tf

T0

) 1
Nit the parameter of the cooling

scheme and Nit the number of iterations. Each iteration consists
in one proposed “Birth”/“Death”/“Translation” move of RJMCMC
dynamics, which may be accepted or not.

To evaluate the performances of IOD-PVRMPP method, we
computed some quantitative measures and we compared them to
those obtained with an optimized MinLOS-MART algorithm [4],
with fixed number of iterations equal to two, which can be consid-
ered as a reference algorithm within our application. We also give
the results of IOD method to show the improvment obtained between
initial and final populations of points. All measures are computed
by taking 10 reconstructed samples (volumes) for IOD-PVRMPP
method given the random nature of the algorithm.

To evaluate the reconstruction quality, we have computed the
cross-correlations (Qv) between the reconstructed volumes and the
reference ones. Figure 1 shows that IOD-PVRMPP provides better
results than MinLOS-MART for seeding densities up to 0.1 ppp. The
reconstruction quality of IOD-PVRMPP method decreases when the
overlapping between 2D particles in images increases.

To evaluate the accuracy of IOD-PVRMPP method, we com-
puted error positions (Ev) between 3D particle positions in recon-
structed volumes and the reference. Results show a very high level of
accuracy with error average varying between 0.01 to 0.043 voxel for
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seeding density up to 0.05 ppp (Fig.3). Curves in (Fig.2) show very
low rates of detected ghost particles with IOD-PVRMPP method
which vary between 0 and 0.098% for seeding density up to 0.05
ppp against 2.92 to 47.74% with MinLOS-MART method. Some
samples of projections after volume reconstruction are presented on
(Fig.4) in order to provide some qualitative visual results.

In our experiments, computation times of IOD-PVRMPP, which
needs considerably more iterations to converge without IOD, and
MinLOS-MART are quite similar up to 0.02 ppp. Then it increases
by increasing the seeding density level in images. But it should be
noted that our algorithm is under development and further computa-
tion optimizations can still be done. Representation of particles via
marks takes up very little space comparing to representation inside
a 3D array volume: If just 8 parameter values are typically associ-
ated to a particle, particle distributions can be stored in less memory
RAM than classical voxel storage. IOD-PVRMPP algorithm needs
between 0.07 and 36 MB storage for these synthetic cases against
192 MB for MART algorithm. Gain in memory storage increases by
increasing the size of the volume.

4. CONCLUSION

In this paper, a new method for 3D particle volume reconstruc-
tion, including initialization procedure, using marked point pro-
cess framework is presented. Rather than pixel-oriented or voxel-
oriented, our work uses object-oriented approach. Optimization is
done with a simulated annealing method using a RJMCMC dynamic.
We have shown, on synthetic cases, the relevance of the proposed
initialization procedure for the reconstruction of a 3D particle vol-
ume. The method is compared to MinLOS-MART. IOD-PVRMPP
shows better results than MinLOS-MART for seeding densities up
to 0.05 ppp. Future works will include the definition of new moves
in the RJMCMC dynamic in order to change the radius and the
center intensity of each particle. The method will be tested on noisy
synthetic case and compare to other non voxel based techniques like
IPR [7,22]. It will be also applied to real experimental case to study
its capacity to reconstruct 3D velocity fields.
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