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ABSTRACT
In this paper, simultaneous wireless information and power
transfer (SWIPT) concept is introduced for multi group mul-
ticast beamforming. Each user has a single antenna and a
power splitter which divides the radio frequency (RF) signal
into two for both information decoding and energy harvesting.
The aim is to minimize the total transmission power at the
base station while satisfying both signal-to-interference-plus-
noise-ratio (SINR) and harvested power constraints at each
user. Unlike unicast and certain broadcast scenarios, semidef-
inite relaxation (SDR) is not tight and global optimum solu-
tion cannot be found for this problem. We propose an iterative
algorithm where a convex optimization problem is solved at
each iteration. Both perfect and imperfect channel state infor-
mation (CSI) at the base station are considered. Simulation
results show that the proposed solution is very close to the
SDR lower bound and a few number of iterations are enough
for the algorithm convergence.

Index Terms— Multicast beamforming, wireless power
transfer, convex optimization, alternating minimization

1. INTRODUCTION

Radio frequency (RF) signals can be used not only for con-
veying information but also for transmitting the energy in
modern wireless communication systems. Recently simulta-
neous wireless information and power transfer (SWIPT) be-
came a promising research area especially for energy con-
strained wireless networks [1]. Mobile users and devices usu-
ally have limited battery and energy harvesting is a useful
approach to improve the energy efficiency and battery dura-
tion [2].

The idea of SWIPT is first introduced in [1] and then
considered for multi-user multi-input single-output (MISO)
systems in [2], [3], etc. In these works, receivers are as-
sumed to have a power splitting (PS) device by which the
received signal is split into two streams with different pow-
ers, one for decoding information and the other for harvesting
energy [2]. Other practical receivers use time switching (TS)
for SWIPT [2]. In this paper, we consider PS scheme in ac-
cordance with the recent works in beamforming area [2], [3].

In multi-user MISO systems, transmit beamforming is an

effective approach for increasing channel capacity and diver-
sity [4]. In [2], unicast beamforming for SWIPT is consid-
ered and global optimum solution is found using the tightness
of the SDR approach. In [3], single group multicast beam-
forming design for SWIPT systems is elaborated, but except
for certain scenarios, the optimum solution is not guaranteed.
In fact, even single group multicast beamforming problem is
shown to be NP-hard [4]. In this paper, we consider a more
general version of this problem, namely multi-group multicast
beamforming for SWIPT systems. To the best of our knowl-
edge, this is the first work which considers this joint problem.

There exists some efficient algorithms to solve multicast
beamforming problem without SWIPT [5], [6]. The algo-
rithm proposed in our previous work [5] uses exact penalty
function to convert the single group multicast beamforming
problem into an equivalent biconvex structure. This algo-
rithm solves the max-min fair beamforming problem. In this
paper, we modify this algorithm for quality of service (QoS)
based multi-group multicast beamforming design in SWIPT
systems. In QoS based beamforming problem for SWIPT, our
aim is to minimize the total transmitted power from the base
station while satisfying the SINR and harvested power con-
straints at each user. In addition, robust beamforming prob-
lem for imperfect channel state information (CSI) is formu-
lated and solved with the proposed method. Simulations show
that the proposed method is very effective and approaches to
the SDR lower bound closely.

2. SYSTEM MODEL
Consider a wireless scenario comprising a base station
equipped with M transmit antennas and N receivers. Each
receiver has a single antenna. Assume that there are G multi-
cast groups, {G1, ...,GG}, where Gk denotes the kth multicast
group of users. Each receiver listens to a single multicast, i.e.,
Gk

⋂
Gl = ∅. The signal transmitted from the antenna array is

x(t) =
∑G
k=1

wksk(t) where sk(t) is the information signal
for the users in Gk and wk is the related M × 1 complex
beamformer weight vector. It is assumed that information
signals {sk(t)}Gk=1 are mutually uncorrelated each with zero
mean and unit variance, σ2

sk
= 1. In this case, the total trans-

mitted power is
∑G
k=1

wH
k wk. The received signal at the ith

receiver is yi(t) = hHi x(t) + nA,i(t) where hi is the M × 1
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conjugated complex channel vector for the ith receiver and
nA,i(t) is the additive zero mean Gaussian noise at the ith

receiver’s antenna with variance σ2
A,i. nA,i(t) is uncorrelated

with the source signals.
The received signal at the ith receiver is split into energy

harvester (EH) and information decoder (ID) with the aid of a
power splitter (PS) device. PS is assumed to be ideal without
any induced noise. A portion of the signal power denoted by
0 < ρi < 1 is transmitted to ID while the remaining 1 − ρi
portion is fed into EH. The received signal at the information
decoder of the ith receiver can be expressed as,

yI,i(t) =
√
ρi(h

H
i x(t) + nA,i(t)) + nI,i(t) (1)

where nI,i(t) is the additional zero-mean Gaussian noise in-
troduced by ID of the ith receiver. nI,i(t) is independent of
source signals and nA,i(t) and has a variance σ2

I,i. Assuming
that ith receiver is in the kth multicast group, Gk, signal-to-
interference-plus-noise ratio (SINR) for the ith receiver is,

SINRi =
ρi|wH

k hi|2

ρi
∑
l 6=k |wH

l hi|2 + ρiσ2
A,i + σ2

I,i

(2)

The signal fed into the EH of ith receiver can be expressed as,

yE,i(t) =
√
1− ρi(hHi x(t) + nA,i(t)) (3)

Then, the power harvested by the EH of the ith receiver is
given as, Pi = ξi(1− ρi)(

∑G
k=1
|wH

k hi|2 +σ2
A,i) where 0 <

ξi ≤ 1 is the energy conversion efficiency of the EH at the
ith receiver. Quality of service (QoS) multicast beamforming
problem is to minimize the total transmitted power subject to
receive-SINR constraint for each user, i.e.,

min
{wk}Gk=1,{ρi}

N
i=1

G∑
k=1

wH
k wk (4.a)

s.t.
ρiw

H
k Riwk

ρi
∑
l 6=k wH

l Riwl + ρiσ2
A,i + σ2

I,i

≥ γi, (4.b)

ξi(1− ρi)(
G∑
k=1

wH
k Riwk + σ2

A,i) ≥ µi (4.c)

0 < ρi < 1, ∀i ∈ Gk,∀k, l ∈ {1, ..., G} (4.d)

where γi and µi are the SINR and harvested power thresholds
respectively for the ith receiver and Ri = hih

H
i . The prob-

lem in (4) is not convex due to quadratic and coupled terms
of wk’s and ρk’s [2]. Let us define w = [ wT

1 wT
2 ... wT

G ]T

and W = wwH . Wk = wkw
H
k shows the (k, k)th block of

W. The problem in (4) can be written as,

min
W,{ρi}Ni=1

Tr{W} (5.a)

s.t. T r{RiWk} − γi
∑
l 6=k

Tr{RiWl} ≥
γiσ

2
I,i

ρi
+ γiσ

2
A,i

(5.b)

G∑
k=1

Tr{RiWk} ≥
µi

ξi(1− ρi)
− σ2

A,i (5.c)

0 < ρi < 1, ∀i ∈ Gk,∀k, l ∈ {1, ..., G} (5.d)
W � 0 (5.e)

rank(W) = 1 (5.f)

The problem in (5) except rank condition in (5.f) is convex
since 1

ρi
and 1

1−ρi are convex functions of ρi in the domain
0 < ρi < 1 [2]. The common technique to solve this type of
problems is semidefinite relaxation (SDR) [4]. In SDR tech-
nique, the only nonconvex rank constraint is dropped and the
relaxed version of the original problem is solved with efficient
convex optimization algorithms. If rank(W?) = 1 where
W? is the solution of the relaxed problem, then W? is the
optimum solution of the original problem. However, this case
is shown to occur very rarely in multicasting problems [5].
In this paper, the following theorem is used to express rank
constraint in a bilinear form.

Theorem 1: For GM ×GM Hermitian symmetric, pos-
itive semidefinite matrices WI and WII, Tr{WIWII} is
upper bounded by Tr{WI}Tr{WII}, i.e. Tr{WIWII}
≤ Tr{WI}Tr{WII}. This upper bound is reached if and
only if WI and WII are rank one matrices and WII = αWI

where α is a positive scalar.
Proof: The proof of this theorem can be found in [5]. �
Corollary 1: For two Hermitian symmetric, positive

semidefinite matrices WI and WII, Tr{WI}Tr{WII} −
Tr{WIWII} = 0 condition implies rank one matrices, i.e.,
WII = λ1(W

II)
λ1(WI)

WI where λ1(.) is the maximum eigenvalue.
The following theorem is presented to obtain an interme-

diate problem structure before the final form.
Theorem 2: The optimum solution of (5) and the fol-

lowing optimization problem in (6) are the same, namely
WI

opt = WII
opt = Wopt, ρiIopt = ρi

II
opt = ρiopt, i =

1, ..., N where {Wopt, {ρiopt}Ni=1} is the optimum solution
of (5):

min
WI,WII,{ρi}Ni=1

Tr{WI}+ Tr{WII} (6.a)

s.t. T r{RiW
I
k} − γi

∑
l 6=k

Tr{RiW
I
l} ≥

γiσ
2
I,i

ρiI
+ γiσ

2
A,i

(6.b)

Tr{RiW
II
k} − γi

∑
l 6=k

Tr{RiW
II
l} ≥

γiσ
2
I,i

ρiII
+ γiσ

2
A,i

(6.c)
G∑
k=1

Tr{RiW
I
k} ≥

µi
ξi(1− ρiI)

− σ2
A,i (6.d)

G∑
k=1

Tr{RiW
II
k} ≥

µi
ξi(1− ρiII)

− σ2
A,i (6.e)

0 < ρi < 1, ∀i ∈ Gk,∀k, l ∈ {1, ..., G} (6.f)
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WI � 0, WII � 0 (6.g)

Tr{WI}Tr{WII} − Tr{WIWII} = 0 (6.h)

Proof: WI
opt and WII

opt are rank one matrices due to (6.h),
which is the condition in Corollary 1. Hence WI

opt =

αWII
opt where α is a positive scalar by Theorem 1 and Corol-

lary 1. Since {WI, {ρiI}Ni=1} and {WII, {ρiII}Ni=1} inde-
pendently solve the same problem, WI

opt = WII
opt = Wopt

and ρiIopt = ρi
II
opt = ρiopt, i = 1, ..., N .

In the above problem, (6.h) is still a nonconvex constraint.
Fortunately this constraint can be moved into the objective
function using exact penalty approach [7], [8]. This modifi-
cation does not change the optimum solution of the problem.
In the following theorem, the equivalency of the new form
and (6) are established.

Theorem 3: The problem in (6) is equivalent to the prob-
lem in (7) for ζ > ζ0 with ζ0 being a finite positive value in
the sense that any local minimum of the problem in (7) is also
a local minimum of the problem in (6).

min
WI,WII,{ρi}Ni=1

Tr{WI}+ Tr{WII}

+ζ|Tr{WI}Tr{WII} − Tr{WIWII}| (7.a)
s.t. (6.b), (6.c), (6.d), (6.e), (6.f), (6.g)

Proof: Assume that (6) is feasible, i.e. Tr{WI
opt} +

Tr{WII
opt} < ∞. Constraints in (7) are all continuous

functions. The feasible sets of (6) and (7) are both closed
and bounded and hence they are compact due to the finite
dimensional space. Therefore the objective function of (7)
corresponds to an l1 exact penalty function [7], [8]. Theorem
3 is valid by definition [7] and due to [8] (page 408). �

Note that |Tr{WI}Tr{WII} − Tr{WIWII}| =
Tr{WI}Tr{WII}−Tr{WIWII} from Theorem 1. In this
case, the final form of the optimization problem can be given
as,

min
WI,WII,{ρi}Ni=1

Tr{WI}+ Tr{WII}

+ζ(Tr{WI}Tr{WII} − Tr{WIWII}) (8.a)
s.t. (6.b), (6.c), (6.d), (6.e), (6.f), (6.g)

The problem in (8) is a biconvex problem and alternat-
ing minimization can be used to solve it [9]. Alternat-
ing minimization is implemented by using iterations where
{WI,r,WII,r, {ρI,ri }Ni=1, {ρ

II,r
i }Ni=1} are the terms at the rth

iteration. At the rth iteration, {WII,r, {ρII,ri }Ni=1} are ob-
tained by considering {WI,r−1, {ρI,r−1i }Ni=1} as fixed terms.
Then the fixed variables are alternated and {WI,r, {ρI,ri }Ni=1}
are obtained from (8) while {WII,r, {ρII,ri }Ni=1} are kept as
fixed.

The objective function in (8) is lower bounded by
Tr{WI

opt}+ Tr{WII
opt} which can be found similar to [5].

Since a convex problem is solved at each iteration, the ob-
jective function improves at each iteration and the iterative
approach is guaranteed to converge [9].

3. ALTERNATING MINIMIZATION ALGORITHM
In the previous parts, the problems in (5) and (8) are shown
to be equivalent in the sense that they have the same optimum
solutions. Furthermore, it is shown that (8) can be solved with
alternating minimization. The convergence of this approach is
guaranteed. However, there is no guarantee for the optimum
solution after the convergence. The steps for the proposed
approach can be presented as follows,

SWIPT with Multicast Beamforming (SMB)
Let λ1(W) be the maximum eigenvalue of the matrix W.
Initialization: r = 0,
Set a proper ζ and solve the relaxed version of (5) by re-
moving (5.f). Let {Ŵ, {ρ̂i}Ni=1} denote the solution. The
singular value decomposition of each Ŵk is calculated
as Ŵk = UkΣkU

H
k . The following initializations are

done for simplicity, i.e., ρI,0i = ρ̂i, i = 1, ..., N and
WI,0

k,l = Uk

√
ΣkΣlUl. Solve the problem in (8) for

{WII,0, {ρII,0i }Ni=1}.
Iterations: r→ r+1
1) Solve (8) for {WI,r, {ρI,ri }Ni=1} while fixing
{WII, {ρIIi }Ni=1} as {WII,r−1, {ρII,r−1i }Ni=1}.
2) If rank(WI,r) = 1 terminate and go to Step 7. If
λ1(W

I,r) ≥ λ1(WII,r−1)+β (improved solution), where β
is a proper positive threshold value (Ex: Tr{WII,r−1}/20),
keep the value of ζ same. Otherwise, increase ζ (Ex: ζ→ 2ζ)
4) Solve (8) for {WII,r, {ρII,ri }Ni=1} while fixing
{WI, {ρIi }Ni=1} as {WI,r, {ρI,ri }Ni=1}.
5) If rank(WII,r) = 1 terminate and go to Step 7. If
λ1(W

II,r) ≥ λ1(W
I,r) + β keep the value of ζ same. Oth-

erwise, increase ζ.
6) Terminate if r = r0 where r0 is the maximum number of
iterations.
7) Take the principal eigenvector of WI,r or WII,r depend-
ing on the termination. If the solution is not a rank one matrix,
then scale its principal eigenvector appropriately.

4. ROBUST MULTICAST BEAMFORMING
In the previous sections, perfect CSI is assumed. In practice,
perfect CSI may not be available and robust beamformer de-
sign is desired to account for the imprecise CSI. The aim of
robust beamforming is to ensure that the received SINR and
harvested energy does not degrade significantly for the chan-
nel errors in the uncertainty set [10]. Here, we consider the
spherical uncertainty model which is one of the most com-
mon models in multicast beamforming. Using spherical un-
certainty region, imperfect CSI can be handled by using an
error ball radius, ε, where the channel vector error, ei, satis-
fies ‖ei‖2 ≤ ε. The robustness of the beamformer depends on
the choice of ε. Hence a large ε generates a more robust so-
lution with a larger performance loss compared to the perfect
CSI. The problem in (5) should be modified to account for
the imprecise channel information. Hence, given the nomi-
nal channel vectors, hi, and ε, the robust beamformer design
problem can be given as,

23rd European Signal Processing Conference (EUSIPCO)

1373



min
W,{ρi}Ni=1

Tr{W} (9.a)

s.t. min
‖ei‖2≤ε

Tr{(hi + ei)(hi + ei)
H(Wk − γi

∑
l 6=k

Wl)}

≥
γiσ

2
I,i

ρi
+ γiσ

2
A,i (9.b)

min
‖ei‖2≤ε

Tr{(hi + ei)(hi + ei)
H(

G∑
k=1

Wk)}

≥ µi
ξi(1− ρi)

− σ2
A,i (9.c)

(5.d), (5.e), (5.f)

There are infinite number of constraints in (9.b) and (9.c)
implicitly. In order to obtain finite number of constraints,
a lower bound for the left hand sides of the inequalities in
(9.b) and (9.c) should be found [10]. If we define Ŵi =
Wk − γi

∑
l 6=k Wl, a lower bound for the term in (9.b) can

be obtained as,
min
‖ei‖2≤ε

Tr{(hi + ei)(hi + ei)
HŴi} ≥ Tr{RiŴi}

+ min
‖ei‖2≤ε

2<{hHi Ŵiei}+ min
‖ei‖2≤ε

eHi Ŵiei

≥ Tr{RiŴi}+ min
‖ei‖2≤ε

2<{hHi Ŵiei} − ε2||Ŵi||F

= Tr{RiŴi} − 2ε||Ŵihi||2 − ε2||Ŵi||F (10)

where we used min‖ei‖2≤ε eHi Ŵiei = ε2λmin(Ŵi) ≥
−ε2||Ŵi||F and ei =

−ε
||Ŵihi||2

Ŵihi in the last expression
in (10), so instead of inequality, equality holds there. Sim-
ilarly if we define W̃ =

∑G
k=1

Wk, a lower bound for the
term in (9.c) can be found as,

min
‖ei‖2≤ε

Tr{(hi + ei)(hi + ei)
HW̃}

≥ Tr{RiW̃} − 2ε||W̃hi||2 (11)

where we used min‖ei‖2≤ε eHi W̃ei ≥ 0. Using (10) and
(11), the robust problem in (9) can be written as,

min
W,{ρi}Ni=1

Tr{W} (12.a)

s.t. T r{RiŴi} ≥ 2ε||Ŵihi||2 + ε2||Ŵi||F

+
γiσ

2
I,i

ρi
+ γiσ

2
A,i (12.b)

Tr{RiW̃} ≥ 2ε||W̃hi||2 +
µi

ξi(1− ρi)
− σ2

A,i (12.c)

(5.d), (5.e), (5.f)

The only nonconvex constraint in (12) is rank constraint in
(5.f) since ||.||2 is a convex function over affine functions.
Hence, SMB algorithm can be used to solve this problem.

5. SIMULATION RESULTS
In this part, the proposed method, SMB, is implemented with
the convex programming solver CVX. Rayleigh fading chan-
nels with unit variances are considered. The total number of

antennas is M = 6. There are G = 2 multicast groups each
with 4 users, namely there are N = 8 users. SINR threshold,
γ, harvested power threshold, µ, antenna noise variance, σ2

A,
and ID noise variance, σ2

I , are same for each user, i.e., γ = γi,
µ = µi and σ2

A = σ2
A,i = 0.01, σ2

I = σ2
I,i = 0.01. The aver-

age of 100 random channel realizations is presented for each
experiment. The initial value of ζ is taken as ζ = 0.001.
Proposed method returned rank=1 solution for all the experi-
ments even though there is no guarantee for such an outcome.

Fig. 1 shows the transmission power for different SINR
and harvested power thresholds. The red and blue lines de-
note the perfect CSI and robust case with ε = 0.01 respec-
tively for different harvested power thresholds, i.e. µ = 0 dB
and µ = −10dB. The performance gap between the proposed
method and the SDR lower bound is very small and the de-
tails are presented inside the small windows. The curves on
the upper part belongs to a higher harvested power threshold,
namely µ = 0 dB. As the SINR threshold increases, trans-
mission power increases as expected. The effect of energy
harvesting diminishes at high SINR threshold naturally. In
addition, the additional power to account for the imperfect
CSI is relatively low demonstrating the effectiveness of the
robust formulation. In Fig. 2, the average number of convex
programming problems (CPP) solved for the proposed algo-
rithm is presented for the same scenario as in Fig. 1. As the
SINR threshold increases, the average number of CPP’s de-
creases. It is seen that the proposed method requires small
number of CPP’s for convergence.

In Fig. 3, the proposed method is evaluated by consider-
ing the harvested energy threshold, µ. In this case, two dif-
ferent SINR threshold values, γ = 10 dB and γ = 20 dB
are used respectively. Transmission power increases as the
harvested power threshold increases. In this case, the effect
of SINR is still seen for high µ values indicating the impor-
tance of SINR. The proposed method for both perfect and im-
perfect CSI performs very well and approaches to the SDR
lower bound for all scenarios. In Fig. 4, the average number
of CPP’s solved for the proposed algorithm is presented for
the same scenario as in Fig. 3. While different set of channels
are used, small number of CPP’s are required for convergence
for this experiment as well.

6. CONCLUSION

In this paper, joint multi-group multicast beamforming and
receive power splitting for SWIPT systems is considered. An
equivalent biconvex formulation is obtained for both perfect
CSI scenario and robust design. The equivalent problem is
solved iteratively by using alternating minimization where a
convex problem is solved at each iteration. This approach is
guaranteed to converge and has been shown to give a near
global optimum solution.
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Fig. 1. Transmission power versus SINR threshold, γ
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