
QUERY BY EXAMPLE SEARCH WITH SEGMENTED DYNAMIC TIME WARPING FOR 

NON-EXACT SPOKEN QUERIES 

 

Jorge Proença, Arlindo Veiga, Fernando Perdigão 

 

Instituto de Telecomunicações, Coimbra, Portugal 

Electrical and Computer Eng. Department, University of Coimbra, Portugal 
 

 

ABSTRACT 

 

This paper presents an approach to the Query-by-Example 

task of finding spoken queries on speech databases when 

the intended match may be non-exact or slightly complex. 

The built system is low-resource as it tries to solve the 

problem where the language of queries and searched audio 

is unspecified. Our method is based on a modified Dy-

namic Time Warping (DTW) algorithm using posterior-

grams and extracting intricate paths to account for special 

cases of query match such as word re-ordering, lexical 

variations and filler content. This system was evaluated on 

the MediaEval 2014 task of Query by Example Search on 

Speech (QUESST) where the spoken data is from differ-

ent languages, unknown to the participant. We combined 

the results of five DTW modifications computed on the 

output of three phoneme recognizers of different lan-

guages. The combination of all systems provided the best 

performance overall and improved detection of complex 

case queries.  

 

Index Terms— Query-by-example, audio search, dy-

namic time warping, pattern matching 

 

1. INTRODUCTION 

 

Searching large databases of audio documents with a 

small query is as task commonly known as Spoken Term 

Detection (STD). Typically, it involves a text-based query 

and a spoken dataset of a single language for which there 

are a large amount of resources to build Automatic Speech 

Recognition (ASR) systems, leading to the audio docu-

ments being indexed at a word level. Challenges such as 

the NIST 2006 STD Evaluation [1] and the 2013 Open 

Keyword Spotting Evaluation [2] have attracted research 

on the STD task. 

Query-by-Example (QbE) is a task that differs from 

STD in the sense that no textual information is considered 

and the query must be audio based, leading to the problem 

of finding audio using audio [3-6]. The necessity for QbE 

arises from cases where the language is unknown or has 

few resources, or if multilingual databases are searched. It 

is expected to match spoken queries to larger audio files 

and, usually, it involves the detection of unconstrained 

audio tokens in the data (zero-resources) [5] or the use of 

phonetic recognizers for other languages (low-resources) 

with the extraction of features such as posterior probabili-

ties of phonemes [3,4]. Most works use classical tech-

niques such as Dynamic Time Warping (DTW) [3] or 

Acoustic Keyword Spotting (AKWS) [7]. Systems for 

QbE search keep improving with recent advances such as 

combining spectral acoustic and temporal acoustic models 

[8], combining a high number of subsystems using both 

AKWS and DTW and using bottleneck features of neural 

networks as input [9], new distance normalization tech-

niques [10] and several approaches to system fusion and 

calibration [11]. 

The MediaEval task of Query by Example Search on 

Speech (QUESST) [12,13,20] (formerly known as Spoken 

Web Search) is a suitable benchmark to tackle the QbE 

problem. The 2014 edition presents some differences to 

the previous years’ challenges by introducing complex 

query-reference matches. In addition to the exact match of 

the query to reference (type 1), there are occurrences 

where a portion of the beginning or the end of the query 

may not match (type 2) and where the words in searched 

audio may be in a different order or with small extra con-

tent in between (type 3). It is also not exactly a STD prob-

lem, since it is only necessary to retrieve the matching 

document, making it a spoken document retrieval (SDR) 

problem. The dataset is multilingual and of mixed acous-

tical conditions and speaking styles, further increasing the 

challenging aspect of the task.  

Our system performs five segmenting strategies of 

Dynamic Time Warping (DTW) applied to state-level 

posterior probabilities comparison, and combines their 

results. These strategies target the match cases defined in 

the challenge. It also fuses the results of the same ap-

proach applied to the output of three phonetic recognizers 

of three languages. Therefore, the search is based on a 

phonetic-level match, and no word-level information is 

acquired. 

 

2. DATASET AND SCORES 

 

The QUESST 2014 dataset [13] includes 23 hours of 

speech in 6 languages: Albanian, Basque, Czech, non-

native English, Romanian and Slovak. Recordings with an 

8 kHz sampling rate and average duration of 6.6 seconds 

were extracted from different sources of larger recordings 

such as broadcast news, lectures, read speech and conver-

sations. The various languages are randomly distributed in 

the data, and no information is given to the participant 

about which language an utterance belongs to, requiring 

robust unsupervised approaches. 
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Queries were manually recorded in different condi-

tions from the utterances, emulating the use of a retrieval 

system with speech. Two sets were created (development 

and evaluation) and three types of queries were defined, 

that present varying matching conditions to the utterances: 

 Type 1 (T1): exact matches. The query should match 

the lexical form of incidences in the utterances without 

any filler content. For example, “brown elephant” as a 

query would match the utterance “The brown elephant 

is running”. 

 Type 2 (T2): lexical variations. Queries may have 

small variations of lexical form at the beginning or end 

compared to the occurrences in the search audio. An 

example would be the query “philosopher” matching 

an utterance containing “philosophy” (or vice-versa in 

this case). 

 Type 3 (T3): word re-orderings and filler content. 

Queries with two or more words may have the words 

appear in a different order in the searched audio. Also, 

small irrelevant filler content in the utterances may be 

present (but not in the query). The matching possibili-

ties of the query “brown elephant” in these cases are, 

for example, “elephant brown”, “elephant is brown”, 

“brown the elephant”. 

The type 2 and 3 queries are the novelty in this edition 

of the challenge, and require complex approaches. The 

fact that there are different languages and speaking styles 

in the data as well as query and utterances conditions 

varying, contribute to the constraint of building low or 

zero-resource systems. 

The results of system performance will be presented 

by the scoring metrics of normalized cross entropy cost 

(Cnxe) and Actual Term Weighted Value (ATWV). Cnxe 

has been used for speaker/language recognition and eval-

uates system scores, with no concern for hard yes/no deci-

sion [14]. It interprets scores as log-likelihood ratios and 

measures the amount of information that is not provided 

by the scores compared to the ground truth where a per-

fect system would have Cnxe ≈ 0. ATWV evaluates sys-

tem decision and takes into account not only false alarm 

and miss error rates, but also a pre-defined false alarm 

error cost (Cfa=1) and a miss error cost (Cmiss=100), as 

well as a prior of the target trials (prior probability of 

finding a query in an audio file, Pt=0.0008). 

 

3. SYSTEM DESCRIPTION 

 

3.1. Phonetic Recognizer 

 

The initial step was to run unconstrained phonetic recog-

nition on all audio and extract frame-wise posterior prob-

ability of phonemes. An early idea was to employ a pho-

neme recognizer based on Hidden Markov Models and a 

keyword spotting system such as our in-house one [15], 

but no easy generation of posteriorgrams could be ob-

tained. Therefore, we decided to use an external tool, a 

phoneme recognizer from Brno University of Technology 

[16] based on long temporal context and neural network 

classifiers. Three systems were available for 8 kHz audio, 

based on three languages trained with SpeechDat-E data-

bases [17]: Czech, Hungarian and Russian. This makes 

Czech the only recognizer matching a language of the 

QUESST 2014 database. The use of different languages 

leads to using separate sets of phonemes, and hopefully 

fusing the results will describe the similarities of a query 

to the searched audio in an improved manner.  

All the queries and audio files were run through the 

three systems, and the state-level posteriorgrams were 

extracted. This means that, per frame, there are values for 

the three states of each phoneme, although the state se-

quence is often well defined. Leading and trailing silences 

or noises were cut on queries, from the initial and final 

frames that had a high probability of corresponding to 

either silence or noise (considered if the sum of the 3 

states of ‘int’, ‘pau’ and ‘spk’ phones was greater than 

50% for the average of the 3 languages). 

 

3.2. Dynamic Time Warping 

 

The posteriorgrams of a query and searched audio can be 

compared frame-wise with a local distance matrix where 

Dynamic Time Warping (DTW) can be applied. We im-

plemented a version of the DTW approach for the pro-

posed task, which will be modified in ways described on 

the next subsection. The basis is defined here: as in [3], 

the local distance is obtained from the dot product of pos-

terior probability vectors of query 𝑞⃗ (with 𝑁 frames) and 

audio 𝑥⃗ (with 𝑀 frames) for each frame pairing:  

 

𝐷(𝑞⃗, 𝑥⃗) = − log(𝑞⃗. 𝑥⃗) ⁡⁡                      (1) 

 

However, the posteriorgram distributions 𝑞⃗ and 𝑥⃗ are 

smoothed with a back-off with 𝜆 = 10−4, to assure that 

the dot product is not zero:  

 

𝑞⃗′ = (1 − 𝜆)𝑞⃗ + 𝜆𝑢⃗⃗                          (2) 

 

Here 𝑢⃗⃗ is a uniform distribution of probability for each 

posteriorgram state. The final result is a local distance 

matrix of size 𝑁 ×𝑀 where DTW is applied. 

The start and end of a DTW path was not restricted in 

the searched audio, so that the query match can happen at 

any location. As for local path restrictions, we tested a 

small number of alternative options, but the most versatile 

was found to be allowing a path to continue in 3 directions 

in the distance matrix to directly adjacent points with the 

lowest local distance: horizontally, vertically and diago-

nally as shown in Figure 1. All these movements have 

equal (unitary) weight, meaning that local distance values 

are simply summed along a path.  

 

 
Fig. 1. Schematic of possible unitary weighted movements 

considered for path creation in Dynamic Time Warping. 

Query 

Audio 

1 
1 

1 
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The final path distance is normalized by the length of 

the path. This is the basic approach (named A1) and out-

puts the lowest normalized distance found (from the best 

path). It is the basis from which the following approaches 

will be constructed. 

 

3.3. Modifications on the DTW 

 

The special query types include lexical variations at the 

beginning or end, word reordering or filler content. To 

tackle these types, we developed four additional ap-

proaches based on changing the DTW method to get dif-

ferent segments or, more precisely, allowing different 

behaviors for DTW paths. During the DTW algorithm we 

keep a matrix of accumulated distances of the best path 

for each point as well as a matrix with backtracking in-

formation. Thus, we can control and find new DTW paths 

in these manners: 

 (A2) This approach accounts for lexical variations at 

the end of the query. We consider cuts of up to 250ms at 

the end, always keeping the matching segment above 

500ms (example on Figure 2). Normalized distance is 

obtained for all possible ending paths, and the minimum 

output.  

 

 

Fig 2. Query vs. Audio posterior distance matrix (top) and the 

best path from A2 (bottom). 

 

(A3) This is the inverse approach of A2, by consider-

ing small lexical variations at the beginning of a query, 

cutting the beginning up to 250ms but keeping it above 

500ms. The cumulative distance matrix doesn’t directly 

tell the values of new possible paths, but we do not repeat 

the DTW. To improve computational speed, we reason 

that the full paths that contain the match will already be 

the ones with the lowest distances for this query-audio 

pair. Therefore, we backtrack only the 5 best paths and 

consider the new possible starts to get the best normalized 

distance possible. 

 (A4) This approach accounts for small extra words or 

filler content in the audio between the query’s own words 

by allowing one “jump” in the DTW path (Figure 3). A 

jump of up to half of the query’s length is allowed, and it 

may not occur at the initial and final 250ms and for que-

ries shorter than 800ms. 

(A5) The last approach accounts for re-ordering of 

query words. It allows swaps of two segments (Figure 4), 

and it’s a similar case to A4 by allowing filler content, but 

the first query segment should be found ahead of the sec-

ond. Since the DTW is performed left to right, we resort 

to backtracking the best paths as in A3, and finding an 

alternative path ahead of the breaking point that better 

matches the start of the query. An additional check is 

performed to ensure that no overlap occurs. The same 

constraints for the position and length of the jump in A4 

are considered for A5’s breaking point and filler content 

amount.  
All examples shown are cases from the development 

dataset that were at first rejected by A1 but are now ac-

cepted with the respective strategies. The selected limita-

tions of cuts, jumps and query durations may seem arbi-

trary but were selected empirically by trialing and accord-

ing to some of the database specifications (such as words 

being larger than 5 phonemes ≈250ms). 

 

3.4. Fusion and Calibration 

 

From the five approaches that output distances for the 

same query-audio pair, it could be argued that the mini-

mum distance obtained would correspond be the best 

match. However, tests showed that taking the minimum is 

not the best method, supposedly due to the special ap-

proaches often finding false matches. We found that the 

harmonic mean of the output of the approaches was a 

more suitable measure (best Cnxe scores on evaluation 

dataset: minimum 0.5256, arithmetic mean 0.5199, har-

monic mean 0.5153), and is employed here for fusion 

systems to extract a single distance value. 

A further normalization is performed per-query, by 

subtracting the mean and dividing by the standard devia-

tion of all the results from Query-Audio pairs for a given 

 

Fig. 3. Query vs. Audio posterior distance matrix (top) and the 

best path from A4 (bottom). 

 

 

Fig. 4. Query vs. Audio posterior distance matrix (top) and the 

best path from A5 (bottom). 
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query (standard score: (𝑋 − 𝜇)/𝜎). The results may be 

skewed with this step to indicate that every query should 

be found at least once in the data, but it is a highly benefi-

cial procedure. Normalized distances are transformed into 

figures of merit by simply taking the symmetrical value. 

The final step is to fuse results based on recognizers of 

different languages. Although there are several methods 

and advances in fusing classifier systems [11], we decided 

to employ the arithmetic mean of the already normalized 

values, found to be a good method on the development 

set. Figure 5 shows the obtained Detection Error Tradeoff 

(DET) curves of the best system on the development da-

taset for using the recognizers of three languages individ-

ually and for their fusion.  
As the main evaluation metric of QUESST 2014, Cnxe 

is calibrated for by employing an affine transformation to 

the data. The linear transformation parameters are trained 

with the Bosaris toolkit [18] for the development set, 

taking into account the ground truth and the prior suggest-

ed by the task, and the linear transform is applied to the 

dev and eval sets. For comparison purposes, the presented 

minimum Cnxe (minCnxe) is computed with a stricter 

approach, the Pool-Adjacent Violators (PAV) transfor-

mation [19], which is non-parametric and leads to lower 

values of Cnxe than the affine transformation. 

 To get a decision if a query is a match to the audio or 

not, a threshold is computed by finding the maximum 

TWV on the dev set, using the defined miss and false 

alarm costs and target prior. Actual TWV (ATWV) is 

therefore equal to maximum TWV (maxTWV) on the 

development set.  
 

4. RESULTS 

 

We decided to analyze two fusions of DTW approaches. 

“Fusion All” combines the normalized distances of all five 

methods. “Fusion 1-2” combines only the two best indi-

vidual approaches, A1 and A2. Overall results for the 

different systems on development and evaluation datasets 

of QUESST 2014 are summarized in Table 1. It is noted 

that, of the individual approach systems, the ones using 

A1 and A2 are always better performing, on dev and eval 

sets and for the two metrics. Even so, although close, their 

fusion was not better than the fusion of all approaches, 

which provided the best results overall for both sets and 

metrics. Comparing A2 and A3 (cutting the end and cut-

ting the beginning of the query), we cannot ascertain 

clearly why A2 performs better, often even better than the 

exact matching A1. It could be due to lexical variations at 

the end of the query being more common (unknown in the 

database), or even that there are often prosodic or enuncia-

tion variations at the end of words. 

To further analyze the developed systems, results for 

the separate query types are compiled in Table 2. Alt-

hough fusion 1-2 is slightly better for type 1 and type 2 

queries, the fusion of all approaches was clearly helpful 

for the type 3 problems. These were the cases that ap-

proaches A4 and A5 targeted and, although they were 

indeed helpful, the complex type 3 queries were still the 

hardest to match. A lot more effort can be done on the 

detection of these matches, as we might not even have 

considered every possible case, such as reordering of 

more than 2 words.  

System Dev - Cnxe, minCnxe Eval - Cnxe, minCnxe Dev - ATWV, maxTWV Eval - ATWV, maxTWV 

A1  0.5771, 0.5645 0.5362, 0.5252 0.4343, 0.4343 0.4269, 0.4291 

A2  0.5700, 0.5568 0.5250, 0.5136 0.4400, 0.4400 0.4248, 0.4288 

A3 0.5918, 0.5787 0.5531, 0.5419 0.4168, 0.4168 0.4052, 0.4082 

A4 0.5883, 0.5745 0.5518, 0.5393 0.4134, 0.4134 0.4065, 0.4122 

A5 0.6004, 0.5846 0.5548, 0.5411 0.4201, 0.4201 0.4183, 0.4212 

Fusion 1-2 0.5637, 0.5500 0.5186, 0.5069 0.4501, 0.4501 0.4400, 0.4416 

Fusion All 0.5615, 0.5467 0.5153, 0.5030 0.4608, 0.4608 0.4538, 0.4568 

Table 2. Summarization of the obtained results on development (Dev) and evaluation (Eval) datasets for the five individual DTW 

approaches and the two fusion systems (lower Cnxe is better, higher ATWV is better). 

 

 

Fig. 5. Detection Error Tradeoff (DET) curves for the develop-

ment dataset of systems using phonetic recognizers of Czech 

(CZ), Russian (RU) and Hungarian (HU) and the mean combi-

nation of results (3langs). Fusion of all 5 approaches is used. 
 

 All types T1 T2 T3 

Fusion 1-2, Dev 0.5637 0.4124 0.6328 0.7260 

Fusion All, Dev 0.5615 0.4119 0.6437 0.6876 

Fusion 1-2, Eval 0.5186 0.3959 0.5114 0.7637 

Fusion All, Eval 0.5153 0.3990 0.5277 0.7089 

Table 1. Cnxe scores for the two fusion systems for the separate 

types of queries defined. 

 

23rd European Signal Processing Conference (EUSIPCO)

1694



5. CONCLUSIONS 

 

We presented an approach to the Query-by-Example chal-

lenge of matching audio queries to multi-lingual audio 

documents and with possible complex query types. The 

DTW modifications constructed tackle the complex que-

ries and the overall results were improved (albeit slightly) 

on the Mediaeval QUESST 2014 task. 

For the next edition of MediaEval, it is already known 

that further intricate query cases will be considered for 

QUESST, namely spontaneously spoken queries, further 

approaching a real case scenario. We intend to include an 

additional number of phonetic recognizers for fusion as 

well as implementing improved fusion methods. Also, we 

can improve on the imposed limits for DTW path cutting 

or jumping (decided empirically) and we didn’t consider 

reordering and lexical variation simultaneously, which 

was possible. We also intend to extend the method to the 

separate task of reading errors detection such as repeti-

tions and partial words. 
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