23rd European Signal Processing Conference (EUSIPCO)

A MODULAR FRAMEWORK FOR EFFICIENT SOUND RECOGNITION USING A
SMARTPHONE

Matthias Mielke*, Lars Weber', Rainer Briick*

* University of Siegen, Microsystems Engineering Group, Siegen, Germany
T WEBER-SOFTWARE, Betzdorf, Germany

ABSTRACT

The identification of sounds is an important tool in ubig-
uitous and context aware applications. Today’s smartphones
are capable of performing even computational intensive tasks,
like digital signal processing and pattern recognition. In this
contribution an implementation scheme and a framework for
sound recognition for smartphones are presented. A basic
sound recognition flow consists of preprocessing, feature ex-
traction, feature selection, classification, and action trigger.
A flow is not hard coded but described in a JSON file and
build dynamically by the framework. The framework itself
is implemented in Java for the Android operating system.
But specific algorithms can be realized in Java, C(++), and
Renderscript for execution on the CPU, or in Filterscript
for execution on a GPU. An example flow is presented and
benchmark results are shown for Java-, C-, and Filterscript-
implementations of Mel Frequency Cepstral Coefficients
(MFCC). Recommendations for technology selection are
made.

Index Terms— sound recognition, smartphone, GPU
computation

1. INTRODUCTION

In the last years, a new class of computer has emerged: the
smartphone. A smartphone provides sufficient resources even
for demanding computational tasks, like digital signal pro-
cessing [1] or sound recognition [3]. In combination with
low energy consumption it is a good platform for various ap-
plications in ubiquitous and context aware computing. The
analysis of the acoustic environment can be used in a variety
of applications, among others assistive technology for people
experiencing hearing impairment [4].

When surveying research in sound recognition it becomes
obvious that different approaches and algorithms are used to
identify sounds. Until now no standard” approach exists that
is capable of accurately recognize every type of sound. In
reverse, when very accurate sound recognition is needed the
algorithms must be tailored to the specific sound. With ubig-
uitous computing in mind this observation leads to the follow-
ing two questions:

978-0-9928626-3-3/15/$31.00 ©2015 IEEE

2431

* How can different sound recognition flows be described
and build flexibly (i.e. without hard-coding each flow)?

* What technologies allow efficient implementation of
sound recognition on a smartphone?

A framework for easy and flexible implementation of sound
recognition is presented in this contribution. Together with
benchmark result of different implementation technologies it
provides a good tool for implementing efficient sound recog-
nition flows.

In the next section a small overview of sound recogni-
tion frameworks is given, followed by a description of the
framework in section 3. In section 4 the extraction of Mel
Frequency Cepstral Coefficients (MFCC) is explained which
was used for the benchmark. The benchmarks results of dif-
ferent MFCC implementations and its impact on battery run
time are presented in section 5. A conclusion closes the paper.

2. RELATED WORK

For sensing and analysing sound data, different approaches
were already introduced in literature. An approach for a flexi-
ble framework was presented with the Modular Audio Recog-
nition Framework (MARF) [5]. It is capable of analysing a
continuous audio data stream, that is processed by a pipeline
of algorithms consisting of the three steps preprocessing, fea-
ture extraction, and classification. The framework provides a
plug-in API for easy addition of new algorithms. An Android
port of the framework used for speaker recognition is intro-
duced in [2], but no information about the execution time or
the power consumption, both crucial parameters for contin-
uous sound analysis, is stated. In addition it only offers the
execution of one single pipeline of processing steps.

Another approach not specifically designed for sound
recognition is introduced with the Funf Open Sensing Frame-
work [6]. The framework samples, saves, and processes
data from different sensors available in Smartphones, among
others the microphone. But the sensor data is not sampled
continuously rather at predefined intervals. Further more the
sampled data is not evaluated on the smartphone but saved
for later evaluation or send to a server for evaluation. The
configuration of the framework is done using a JSON file.

23rd European Signal Processing Conference (EUSIPCO)

Pipelines P | Intent
p Source Pre- Feature | | Feature || Classi- - . Application
d) @) HpmcessmgH ex!mcuonH selection H fication H Decision H Sink } > A
Intent
b) Feature Feature C]as.sn— Decision Sink i
extraction [| selection [[| fication
:]E
C) ‘ -"[.mcm
fication D
Factory

OO0 00

Stage implementations registered at framework

Fig. 1. Example configuration of different sound recognition
flows running in the framework.

3. THE FRAMEWORK

The framework (named Android Audio Analysis (libAAA))
which is described here combines continuous sound recogni-
tion with the easy configuration using a file. It provides three
basic functionalities: 1. a definition of basic processing stages
and interfaces for each step, 2. the construction of a complete
sound recognition flow defined by a configuration, and 3. the
means to start and control the execution of the constructed
flow.

A sound recognition flow in the framework consists of
basic processing stages (see section 3.1). The concrete algo-
rithms in the processing stages are not implemented in the
framework directly. In fact the framework defines interfaces
for the algorithms of the different stages. A new algorithm
just needs to implement the appropriate interface and regis-
ter at the framework. The construction of sound recognition
flows is described in a configuration file (see section 3.2).

After a sound recognition flow is build from the config-
uration it is started in a background service, which manages
the lifecycle of the flow.

3.1. Basic sound recognition flow

An application can instruct the framework to perform an au-
dio classification task with a specific flow, by sending an in-
tent with the description of the flow in the form of a JSON file
(see section 3.2).

Each sound recognition flow consists of basic processing
stages that are processed sequentially. The results of one stage
is the input for the next stage. They form a pipeline (a com-
plete pipeline is shown in Figure 1 a)). The seven stages are:

Source: the source stage provides access to the audio data.
It sets the audio source, the sampling rate, and the sample
depth. Framesize and overlapping are also set in this stage.
Only one source may exist in the sound recognition flow but
this source may be the root for a tree structure of different
pipelines. The frames are passed to the preprocessing stage.

Preprocessing: in the preprocessing stage, transforma-
tions can be applied to the data from the source stage. Ex-

2432

amples are windowing functions or low/high pass filter. If
more than one transformation should be applied to the data
preprocessing stages can be combined sequentially.

Feature extraction: in this stage the features necessary for
the classifier are extracted. Different feature extraction al-
gorithms can be run in parallel to form N features. The al-
gorithms can extract features from a single frame or from a
number of frames in parallel. In this way it is possible to
utilize the GPU for feature extraction (for more details see
section 4).

Feature selection: a subset of the features can be chosen
for later classification in the feature selection stage. E.g. a
Principal Component Analysis can be used to eliminate cor-
related features. Only one feature selection stage can be used
in each pipeline.

Classification: here the actual classification is imple-
mented. The framework itself only supports one classification
stage per pipeline. Even though it is possible to build com-
plex multi layered classifiers by instantiating and connecting
different classifiers in the stage implementation.

Decision: on the basis of the classification results the de-
cision stage determines which class(es) is(are) detected. E.g.
Postprocessing and prioritization can be done in this stage.

Sink: the sink triggers an action depending on the result of
the decision stage. An action may be e.g. the start of another
application by sending an intent (Figure 1) or showing a note
on the smartphone’s screen.

Joint stages of different pipelines can be used together to
minimize redundancy and processor utilization. An example
is shown in Figure 1. Pipeline a) and b) share the source and
the preprocessing stage, whose result is used by both. Addi-
tionally pipeline c¢) uses the same stages as b) until the classi-
fication. A fork can be introduced between stages resulting in
a tree structure.

3.2. Configuration of a recognition flow

The construction of a pipeline is realized using a factory pat-
tern. The stage implementations register with the factories to
make themselves known, so that they become available for
pipeline construction.

The actual pipeline is described using a JSON file (Java-
script Object Notation). JSON is a text-based data format and
can be used for storage, and interchange of data. The data
in a JSON file are organized as attribute-value pairs. The file
contains a textual representation of a pipeline. It consists of
identifiers of the stages and the information which implemen-
tation(s) should be used for the stage.

An excerpt of a flow configuration is shown in Listing 1.
In the excerpt the feature extraction (“featureExtraction”),
feature selection (“featureSelection”), and the classifica-
tion (“classification”) of a sound recognition pipeline are
defined. Of particular importance is the keyword “imple-
mentation” which is used to denote the actual implemen-

23rd European Signal Processing Conference (EUSIPCO)

Listing 1. Excerpt of a flow configuration in JSON

“featureExtraction”: [

{
“elements”: [
{
”featureCount”: 13,
“implementation”: “de.uni_siegen.mse.aaa.y
featureextraction. MFCCFilterScriptMultiple v
"lift”: 22.0,
“melBandCount”: 20
¥
1,
”featureSelection™: [
{
“classification”: |
{
“implementation”: “de.uni_siegen.mse.aaa.y
NeuronalNetworkClassification”,
”serializedNeuronalNet”: “eNqIWHIs[...] Ckh0=",

tation used for the stage. In the excerpt an MFCC imple-
mentation "MFCCFilterScriptMultiple” from the package
”de.uni_siegen.mse.aaa.featureextraction” is used for the fea-
ture extraction. Additional keys are used to parametrize the
implementation. E.g. key “featureCount” is used to set that
13 MFCCs have to be extracted. The results are passed
through an empty feature selection stage to the classification.
The implementation "NeuralNetworkClassification” from the
package “’de.uni_siegen.mse.aaa” realizes a Neural Network
classifier. The actual configuration of the Neural Network is
serialized and saved in the Base64-coded string after “serial-
izedNeuronalNet”. Binary data can be included in the flow
configuration file through the Base64 coding.

The actual construction of a flow is done by a factory pat-
tern. For each stage a factory exists at which the stage imple-
mentations must register so that they can be used to construct
a sound recognition flow (see Figure 1).

The necessity to implement the stages’ interfaces intro-
duces an overhead compared to hard wiring a sound recog-
nition flow. This overhead was measured using a Samsung
Galaxy Nexus (two core CPU, 1 GB RAM) with Android 4.3.
The processor’s frequency was fixed at 350 MHz and a simple
flow consisting of MFCC extraction and classification with a
Neural Network was used. The flow was compared to the
hard wired flow of an earlier experiment [3]. The measure-
ment showed that the overhead introduced by the framework
is 3.1 %. CPU utilization was 16 % during the measurement.

4. MFCC EXTRACTION USING GPU

4.1. MFCC extraction

MEFCC are often successfully applied in speech and sound
recognition. The extraction starts with a frame x with length

2433

N. At first the frame is processed with a preemphasis filter
given by (1) to pronounce the high frequencies.

2'[n]=2[n]-097-z[n-1], 1 <n<N.)

The resulting vector z’ is windowed with a Hamming Win-
dow w[n] (3) and transformed into the frequency domain us-
ing a Discrete Fourier Transform (2).

N-1
X[m]= Y wn]/[n]e ™™V 0<m<N. (2
n=0

wln] =0.54 - 0.46 - cos(2mn/N). 3)

The spectrum X [m] is warped into the Mel scale by calcu-
lating the magnitude and the application of triangular Mel
spaced filter bank H (see [7, p. 314ff.] for more details).

M-1
S[m] = log[> X(k)|2H(k)] ,0<m<M. (@)
k=0
At last a Discrete Cosine Transform (DCT) (5) is applied to
the filter bank energies S[m].

c[n] = MilS[m]cos(ﬂ'n(m +1/2)/M),0<m<M (5)
m=0

The MFCC extraction is implemented in different technolo-
gies: Java, C, and Filterscript. Because Java and C are stan-
dard technologies and available for a multitude of platforms
the implementations will not be explained here in detail.
Available on the Android platform only are Renderscript and
Filterscript. A Renderscript/Filterscript implementation is
platform independent. It is compiled to machine code on
the target device just prior to execution, resulting in highly
optimized code for the specific target. Filterscript, a subset
of Renderscript, can be used to implement algorithms for the
Graphics Processing Unit (GPU).

4.2. MFCC on GPU

A Filtercript implementation consists of a kernel that is called
for each element in an allocation, i.e. an array of objects of
one type. The runtime manages allocation to processors, and
scheduling and synchronization of the kernels. No synchroni-
sation is possible inside a kernel. To achieve synchronization,
an algorithm has to be split into different sequential kernels.
Between two kernels the runtime performs the synchroniza-
tion.

Two GPU implementations of the MFCC algorithm are
implemented using Filterscript. Because of the little im-
pact on the overall performance framing and windowing are
not done in Filterscript but in the Java context. The Filter-
ScriptMultiple implementation extracts MFCC from multiple
frames in parallel (data parallelism), so that each processing
core has a separate frame to work on. Each kernel imple-
ments the whole algorithm from preprocessing to DCT. Since

23rd European Signal Processing Conference (EUSIPCO)

a)

Frame 1 |;

| FFT »

Frame n

D —

: e
[]

filter bank

[
m=log,(n)

Fig. 2. Overview of the dataflow of the two GPU implemen-
tations. a) FilterScriptMultiple, b) FilterScriptSpawn.

each kernel implements the whole MFCC algorithm it is not
necessary to synchronize data or execution between the GPU
cores. The concept is illustrated in Figure 2 a). A drawback
that comes with this implementation is that multiple frames
must be buffered before they are processed all at once. This
creates an additional processing delay.

The second implementation is the FilterScriptSpawn that
processes a single frame with multiple processing cores in
parallel (task parallelism). Each calculation step is imple-
mented in an own kernel, that is executed for each element in
the allocation. The elements of the allocation are processed
in parallel. In total five different kernels are involved in that
implementation: the four kernels depicted in Figure 2 b) and
one kernel that controls the data flow and calls the kernels in
the correct sequence.

The FFT is realized with a single kernel that is called for
each stage of the FFT’s butterfly structure. This results in
m = loga(n) sequential executions of the kernel for an n-
point FFT. A dedicated kernel is then used to calculate the
absolute value of the FFT’s results. The filter bank is realized
in a dedicated kernel that is called once for each filter bank
channel. Finally the DCT is performed in the last kernel.

The matrix H that describes the triangular filter bank and
the DCT matrix are precomputed in Java once and passed into
Filterscript context.

5. BENCHMARK

In an earlier experiment with a hard wired sound recogni-
tion flow the MFCC extraction was responsible for the largest
fraction of the calculation cycle [3]. Based on this observa-
tion MFCC extraction was chosen for benchmarking the im-
plementation technologies.

The benchmark was run on a LG Nexus 5 smartphone
which is equipped with a quad core processor Qualcomm
Snapdragon 800, 2 GB of main memory and an Adreno 330

2434

Time (ms)

Java code —+—
Native code —¥—
FilterScriptMultiple —#— —{
FilterScriptSpawn
I 1 1

0.0625

0.015625 L . L L L
64 128 256 512 1024 2048 4096 8192

16384 32768

Frame size (# elements)

Fig. 3. Execution time of MFCC calculation for a single
frame.

GPU. Operating system is Android 4.4. To eliminate the in-
fluences of dynamic frequency scaling by the Linux Govenor
and thermal management, the processor’s frequency was
fixed to 960 MHz (the highest frequency without throttling
the processor because of heat).

Another source of influence on execution time of Java
code is the Just in Time (JIT) compilation supported by An-
droid’s Dalvik VM. For a fast start up time the program code
is just interpreted or compiled without optimization. Later
the runtime recognizes often used program sections and op-
timizes them, which takes some time but improves perfor-
mance significantly. To exclude the execution speed before
JIT optimization the first 10 % of extractions are ignored.

5.1. Extraction time

The implementation technology has direct influence on the
performance of the MFCC. To get an inside into that the ex-
traction time of MFCC implemented in Java, native Code (C)
and Filterscript was measured and compared. The input for
the measurement was provided by a sound file that contains
a recording of a siren of an emergency vehicle in Germany.
The recording has a duration of six seconds, sample rate of
16 kHz and depth of 16 bit. 13 MFCC were extracted for dif-
ferent frame sizes ranging from 64 samples (4 ms) to 32768
samples (2048 ms). For each technology and frame size the
mean of the extraction times of 480 frames was calculated.
For the FilterScriptMultiple implementation the number of
frames was multiplied by the number of processing cores in
the GPU (32) and the measured time was also divided by that
number. In that way the number of frames to be processed
by each core was equal to the other implementations so that
the overhead of the measurement itself was still the same. The
extraction times depending on frame size are plotted in Figure
3. Native code written in C showed the best performance for
all frame sizes. It provides the shortest extraction time. Fil-
terScriptMultiple performs nearly as good as the native code.
Surprisingly the FilterScriptSpawn implementation performs
rather poor for small frame sizes; even worse than the Java
implementation. The Java implementation is in average five
times slower than the native implementation.

23rd European Signal Processing Conference (EUSIPCO)

45 - ; . :
Native code % FilterScriptMultiple 1
B 0 [] Javacode + No MFCC m
E’ 35 - m N u % [FilterScriptSpawn |
= X ¥ %
£ = X
e aa® =&
2 5 ¥uEc mEsElE®m o *;7
=] X + +>K>K)< * ¥ X ***¥*+ X -
s 2oF + + ++ ++ +++ +F + sk
2 +
2 15 %
& m ™y
s 10 z]
£
[SEEE |
0 L 1 L L)
100 95 90 85 20 7

Remaining battery charge (%)

Fig. 4. Energy consumption of the different MFCC imple-
mentations. Each data point indicates the runtime that was
achieved with 1 % of battery charge.

5.2. Measurement of energy consumption

But not only the extraction time is of interest for evaluating
the implementations. The power consumption is especially
important for mobile applications and was measured in a sec-
ond experiment for each technology. Since the power con-
sumption of the Nexus 5 cannot be measured directly (battery
not removeable) the time for discharging the battery to 75 %
of it’s capacity (8.5 Wh) was measured for each implemen-
tation. The smartphone was set to flight mode and all other
applications were closed using the Android task manager to
minimize the impact on the runtime measurement. In this test
the microphone’s audio data was sampled with 16 kHz fre-
quency and 16 bit depth. 512 samples long frames (32 ms)
were processed to extract 13 MFCC. The base energy con-
sumption was assessed using an empty flow. In this flow the
data was just captured but not processed and only passed from
one stage to the next.

Figure 4 shows the discharge times for the different im-
plementations. The x-axis shows the battery charge and the
y-axis the time it takes to spend one percent of the battery
charge. As expected the empty flow (green triangle) achieves
the longest runtime, followed by FilterScriptMultiple, the na-
tive and Java implementation. The FilterScriptSpawn has the
highest energy consumption. Table 1 shows the average time
for discharging (t4) and the energy consumption per frame.
Even though the calculation time of MFCC for one single
frame is longer using the FilterScriptMultiple than Native
code (see 5.1) its power consumption is less than half of the
native code.

6. CONCLUSION

The contribution of this paper is twofold. First, a modular
framework for implementation of sound recognition flows is
presented. Through the definition of a pipeline and introduc-
tion of interfaces for each pipeline stage, the framework can
be easily tailored to different needs. New algorithms in differ-
ent technologies can be easily added without recompilation of
the framework. The framework introduces a small overhead

2435

Implementation tq (min) Energy
25% 1% per frame (uJ)

Native code 640.3 25.61 853

Java Code 5352 2141 2105

FilterScriptSpawn 413.8 16.53 4340

FilterScriptMultiple 696.7 27.87 338

No MFCC 739.3 29.57 —

Table 1. Power consumption of different technologies.

(3.1 %) compared to a hard-coded sound recognition flow.
Second, by choosing an appropriate implementation technol-
ogy the power consumption of a pipeline can be optimized.
If a large amount of data needs to be processed a GPU im-
plementation should be considered. For the MFCC the Fil-
terScriptMultiple has lowest power consumption even though
the native implementation needs less time to extract MFCC. A
drawback of the FilterScriptMultiple implementation is that it
processes multiple frames at once that introduces delay. Pro-
viding the best trade-off between efficiency and power con-
sumption a native implementation should be chosen if extrac-
tion time and power consumption are an issue.

REFERENCES

[1] A.J. Bianchi and M. Queiroz, “On the performance of
real-time dsp on android devices,” in Proc. of the 9th
Sound and Music Computing Conf, 2012, pp. 113-120.

[2] Y. Chen, E. Heimark and D. Gligoroski, ‘“Personal
Threshold in a Small Scale Text-Dependent Speaker
Recognition,” in Proc. of the Intl Symp on Biometrics
and Security Technologies, 2013, pp. 162—170.

[3] M. Mielke and R. Briick, “Smartphone application for
automatic classification of environmental sound,” in
Proc. of the 20th Intl Conf Mixed Design of Integrated
Circuits and Systems, 2013, pp. 512-515.

[4] M. Mielke, A. Griinewald, and R. Briick, “An assistive
technology for hearing-impaired persons: Analysis, re-
quirements and architecture,” in Proc. of the 35th An-
nual Intl Conf of the IEEE Engineering in Medicine and
Biology Society, 2013.

[5] Serguei A. Mokhov, “Choosing best algorithm combi-
nations for speech processing tasks in machine learning
using marf,” in Advances in Artificial Intelligence, vol.
5032 of LNCS, pp. 216-221. Springer, 2008.

[6] N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland,
“Social fmri: Investigating and shaping social mecha-
nisms in the real world,” Pervasive Mob. Comput., vol.
7, no. 6, pp. 643-659, 2011.

[71 X.Huang, A. Acero, and H.-W. Hon, Spoken Language
Processing: A Guide to Theory, Algorithm and System,
Prentice Hall, 2001.

