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ABSTRACT

In this paper, we propose to discriminatively model target
and impostor spectral features using Deep Belief Networks
(DBNG5) for speaker recognition. In the feature level, the num-
ber of impostor samples is considerably large compared to
previous works based on i-vectors. Therefore, those i-vector
based impostor selection algorithms are not computationally
practical. On the other hand, the number of samples for each
target speaker is different from one speaker to another which
makes the training process more difficult. In this work, we
take advantage of DBN unsupervised learning to train a global
model, which will be referred to as Universal DBN (UDBN).
Then we adapt this UDBN to the data of each target speaker.
The evaluation is performed on the core test condition of the
NIST SRE 2006 database and it is shown that the proposed
architecture achieves more than 8% relative improvement in
comparison to the conventional Multilayer Perceptron (MLP).

Index Terms— Speaker Recognition, Deep Belief Net-
work, Restricted Boltzmann Machine, Feature Classification

1. INTRODUCTION

GMM-UBM is the conventional state-of-the-art method in
speaker recognition. The mean vectors of MAP adapted
GMMs are concatenated to form high dimensional vectors
called supervectors. Supervectors are then represented by
low dimensional vectors using an effective factor analysis
technique well-known as i-vector [1]. On the other hand,
different types of neural networks, including Multilayer Per-
ceptron (MLP), have been used for speaker recognition (e.g.,
in [2-4]). Deep Belief Networks (DBNs) have recently shown
effective alternative solutions for different machine learning
tasks in speech processing (e.g., [5-10]). The network pa-
rameters in DBN are pre-trained using Restricted Boltzmann
Machines (RBMs). Unsupervised pre-training phase helps
the network to converge faster and avoid local minima in the
supervised discriminative training phase.

This work has been funded by the Spanish project SpeechTech4All
(TEC2012-38939-C03-02) and the European project CAMOMILE (PCIN-
2013-067).

978-0-9928626-3-3/15/$31.00 ©2015 IEEE

2162

RBMs and DBNSs have also been used in speaker recogni-
tion for different purposes. Different combinations of RBMs
have been used in [11, 12] to model i-vectors. In [13] speaker
factors are extracted using RBMs. In [14] and [15] RBMs
have been used to extract pseudo-i-vectors from acoustic fea-
tures and i-vectors, respectively. They have also been em-
ployed in [16] as a non-linear transformation and dimension
reduction stage for GMM supervectors. DBNs have recently
been used to extract Baum-Welch statistics for supervector
and i-vector extraction [17, 18]. Other deep learning tech-
niques have also been used in speaker recognition (e.g., [19,
20]).

In this paper, the authors propose to use speaker spectral
features as the inputs to DBNs in order to build discrimina-
tive target speaker models. In the feature level, the number of
impostor samples is considerably larger than when i-vectors
are used as the inputs [10,21,22]. Therefore, the impostor se-
lection techniques proposed in [10, 22] are not computation-
ally practical. On the other hand, as the number of samples
for each target is different from one speaker to another, train-
ing DBNs for different speakers will be more difficult. We
take advantage of DBN unsupervised learning to train a global
model, which is referred to as Universal DBN (UDBN). Then
the UDBN is adapted to each target data to build discrimina-
tive speaker models. Experimental results show that the pro-
posed architecture achieves more than 8% relative improve-
ment in comparison to the conventional MLP.

2. DEEP BELIEF NETWORKS

Deep Belief Networks (DBNs) comprise multiple layers of
stochastic hidden units above a single layer of visible units
(Fig. 1). They form originally a generative model which is
able to capture higher-order statistics of input data [23]. They
can be trained efficiently using a greedy layer-wise algo-
rithm in which every two adjacent layers are considered as a
Restricted Boltzmann Machine (RBM). The output of each
RBM is considered as the input to its above RBM (Fig. 1.a).
RBMs are constructed from two layers of stochastic hidden
and visible units where there is no intra-layer connection be-
tween units (Fig. 2.a). Units can be either stochastic binary or
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Fig. 1. Unsupervised (a), and supervised (b) DBN training.
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Fig. 2. RBM (a), and RBM training using CD-1 algorithm (b).

Gaussian real-valued. RBMs are trained via an approximated
version of the Contrastive Divergence (CD) algorithm called
CD-1 [23]. As itis shown in Fig. 2.b, CD-1 is carried out in a
three-step procedure. First, the hidden layer values are com-
puted given the visible units with the posterior probability
distribution,

v
p(hj=1|v,0)=0 (aj + Zwij%) (D

i=1
where = (w, b, a) is the set of RBM parameters, including
weights, visible and hidden biases, respectively. o(z) = (1 +
e~*)~!is the sigmoid function and V is the number of visible
units. Second, the values for visible units are reconstructed
given the hidden units. Depending on the type of the visible
units, the posterior probability of the reconstructed values will

be,

H
j=1
H
j=1

where H is the number of hidden units. A (y, 62) is a Gaus-
sian with mean p and variance 62. It is important that hidden
unit likelihoods are converted to binary values before being
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used in (2) and (3) [24]. Third, the first step is repeated given
the values of the reconstructed visible units.

Once the procedure is completed, the network weights
will be modified by,

Awij ~—€ (<Uihj>data - <’Uihj>recons) “4)

where ¢ is the learning rate, w;; is the weight between a pair
of visible v; and hidden unit h;. (-) ., a0 (-),...ons denote
the expectations when the hidden state values are driven re-
spectively from the input data and the reconstructed one. This
process is iterated until the algorithm converges. Each itera-
tion is called an epoch. In order to accelerate the parameter-
updating process, it is recommended to divide the whole train-
ing dataset into smaller ones, called mini-batches.

When the generative DBN is trained (Fig. 1.a), it can be
converted to a discriminative one by adding a label layer on
top of the network and performing a standard backpropaga-
tion algorithm (Fig. 1.b). Actually, the greedy layer-wise
RBM-based training is considered as a pre-training phase for
the discriminative DBN. It is shown in [23] that in practice
the pre-training phase outperforms the random initialization
of the network and avoids local minima for the supervised
training phase.

3. SPEAKER FEATURE CLASSIFICATION WITH
DBN

Fig. 3 shows the block diagram of the proposed architecture
in this paper. First, features for impostor and target utterances
are extracted. In the next step, a speaker-dependent mean-
variance normalization is applied. Impostor samples are then
subject to an impostor sample selection step. As it is shown in
Fig. 3, impostor sample selection is applied before both Uni-
versal DBN (UDBN) and discriminative target model train-
ing.

In [10,21,22] the authors apply a similar method to dis-
criminatively model the target and impostor speaker i-vectors.
In this paper, we use spectral features. The use of speaker
features gives rise to new problems. The amount of impos-
tor speakers, and therefore the number of impostor samples,
are considerably large. Different impostor selection methods
have been proposed for i-vectors [10,22]. However, they are
not practical in the frame feature selection due to the compu-
tational complexity and memory usage. Therefore, we per-
form simply a random impostor sample selection. In the case
of UDBN, we select as many samples as possible. The num-
ber of selected samples is constrained by the resource limi-
tations. In the case of speaker models, we select randomly
the same impostor samples for all target speakers. In order
to keep balanced the number of target and impostor samples
for each target speaker model, the number of selected impos-
tor samples is almost equal to the average number of target
samples.
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Fig. 3. Block-diagram of the proposed Adapted DBN (ADBN) method (SD-MV Norm: Speaker-Dependent Mean-Variance Normalization).

On the other hand, the number of target samples varies
from one speaker to another, which is not the case when i-
vectors are the inputs to the network [10,21,22]. We fix the
number of mini-batches for all target speakers instead of using
fixed mini-batch size. In this way, the number of times that
the parameters of each network is updated in each iteration
(epoch) will remain constant for all target speakers.

Unlike the previous works [10,21] in which very few input
i-vector samples are available for each target speaker model,
in the feature vector level we have enough data to train net-
works. Therefore, the overfitting problem will be less proba-
ble in this case, whereas the training time will be considerably
higher. Moreover, in [10,21] the authors proposed to balance
manually the number of target and impostor samples in each
mini-batch, which is not necessary in case of feature inputs.

The aim is to capture the information of all available back-
ground data by training a generative DBN in an unsupervised
manner, and then to adapt the background model to few avail-
able data of each target speaker. The two main steps of this
process are described as follows.

3.1. Universal DBN

As it was mentioned in section 2, DBN can be trained in an
unsupervised manner without labelled data. As it is shown in
Fig. 3, we train a DBN model based on the background data
which is referred to as Universal DBN (UDBN). This model is
further adapted to the data of each target speaker. UDBN can
also tackle the imbalance between the two classes of impostor
and target speaker samples by incorporating the information
lies in the huge amount of impostor data in a single universal
model. The UDBN should be built on the whole available
impostor samples. However, due to resource limitations we
select randomly as many impostor samples as possible.

3.2. Unsupervised DBN adaptation

As it was mentioned in section 2, the DBN pre-training can
lead to better initialization of the network parameters which
are further used in the supervised phase [23]. However, the
DBN pre-training may be insufficient to build a good model,
when few samples are available.Therefore, we propose to
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adapt the UDBN model of section 3.1 to both target and
impostor samples of each target model. The adaptation is
carried out by pre-training each network initialized by the
UDBN parameters. In order to avoid overfitting, fewer num-
ber of epochs is used for the unsupervised training phase
of the network. We refer to this method as Adapted DBN
(ADBN).

4. EXPERIMENTAL RESULTS

4.1. Database and setup

Two different types of features have been used for the ex-
periments. One is the log filter bank energies (FBE), and
the other is frequency filtering (FF) [25]. FF features, like
MEFCC:s, are a decorrelated version of FBEs [25]. It has been
shown that FF features achieve equal or better performance
than MFCCs [25]. Both FBE and FF features are extracted
every 10 ms with a 30 ms Hamming window. The size of
static FBE and FF features are 18 and 16, respectively. We
use 5 frames (2-1-2) of FBEs or FFs in order to compose 90-
or 80-dimensional feature inputs for the networks. Before fea-
ture extraction, speech signals are subject to an energy-based
silence removal process. All the features are mean-variance
normalized per each utterance.

The whole core test condition of the NIST 2006 SRE eval-
uation [26] is used in all experiments. It comprises of 816
target speakers, with 51,068 trials. Each signal consists of
about two minutes of speech. The inputs to the networks con-
sist of target samples and 10, 000 impostor samples (close to
the average number of samples of all target speakers), which
are randomly selected from impostor speakers. As it was
mentioned in section 3 we consider a fixed number of mini-
batches for all target models, which is equal to 200 in all of the
experiments. However, UDBN is trained using four million
randomly selected impostor samples with a fixed mini-batch
size of 100.

All the architectures used in this paper comprise one hid-
den layer with 128 hidden units. The fixed momentum and
weight decay for all the systems are set to 0.9 and 1077,
respectively. A sparsity target of 0.05 and a sparsity penalty
of 10~* are used for all the systems. A learning rate of
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Classifier Feature EER (%)
MLP FBE 19.81
MLP FF 18.12
DBN FF 17.19
ADBN FF 16.65

Table 1. Results obtained on the core test condition of NIST SRE
2006 evaluation. ADBN is referred to the proposed Adapted DBN
approach.
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Fig. 4. Comparison of the convergence speeds of MLP, DBN, and
ADBN configurations for a given target speaker.

0.05 is employed for both MLP configurations. For MLP
with FBE and FF features 700 and 400 epochs are used, re-
spectively. Since the input samples are real-valued data, a
Gaussian-Bernoulli RBM is used for all DBNs [24,27]. The
unsupervised part of the DBN is trained by a learning rate of
0.0001 with 100 epochs which is then followed by a super-
vised training with ¢ = 0.09 and 150 epochs. The UDBN
is trained in an unsupervised fashion with ¢ = 0.0001 and
200 epochs. Adaptation process in ADBN is carried out by 5
epochs with ¢ = 0.001, and supervised phase is trained with
€ = 0.06 and 250 epochs.

4.2. Results

The obtained results have been shown in Table 1 for differ-
ent methods and configurations. There is more than 8.5%
relative improvement using the MLP network with FF fea-
tures in comparison to the MLP with FBE features. It should
also be mentioned that the number of epochs needed for an
MLP system to converge with FBE features is much higher
than the one for FF features. This may be due to the fact that
FF features are more decorrelated than the FBE features as
stated in [25]. Therefore, the network needs more iterations
to learn the correlation among input components. Regarding
both convergence speed and better classification performance,
we decided to continue our experiments with FF features. As
it was expected and is shown in Table 1, DBN pre-training
improves the equal error rate (EER). The results obtained for
ADBN reveals the effectiveness of the proposed method in
section 3. The result is better than the DBN pre-training and
more than 8% relative improvement is achieved comparing
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Fig. 5. Comparison of DET curves for MLP and the proposed
ADBN.

with MLP using FF features.

Fig. 4 compares the convergence speeds of MLP, DBN,
and ADBN configurations for a given target speaker model
in the supervised training phase. Each of these architectures
is trained with the network parameters of the corresponding
results reported in Table 1. The number of samples of the
selected target speaker is close to the average number of sam-
ples for all target speakers. There is a considerable difference
between MLP and DBN-based methods in terms of conver-
gence time. For approximately the same level of reconstruc-
tion error, MLP needs more than twice as many epochs as
the one for DBNs. In other words, the convergence speed of
DBN-based models is much higher than the one of conven-
tional MLP. This is another advantage of DBNs which is of
great importance especially when dealing with large amount
of data with few available resources. Fig. 4 also reveals that
both DBN and ADBN are converged in a similar way, but the
ADBN has less fluctuations.

Fig. 5 shows the detection error trade-off (DET) curves
for the MLP and ADBN techniques. It shows that not only at
the EER but also at all other working points ADBN performs
better than MLP configuration.

5. CONCLUSION

We discriminatively train target speaker models with the
speaker spectral features using DBNs. Two new issues are
addressed in this paper, namely the large amount of impostor
data and the difference among the number of samples for dif-
ferent target speakers. The authors take advantage of a global
model which is referred to as Universal DBN (UDBN). The
UDBN is adapted to data of each target speaker. The pre-
liminary results on the core test condition of the NIST SRE
2006 database show that this UDBN adaptation together with
discriminative training of target speaker models outperforms
both the conventional MLP and DBN.
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