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ABSTRACT
This paper describes a model-based corrector for distortions
due to propagation of acoustic waveforms in air in a cylindri-
cal waveguide at high sound pressure levels. The nonlinear
distortions are modeled using the Burgers’ wave propagation
model, accounting for dissipation and boundary layer disper-
sion effects. The corrector was designed to mitigate these
distortions in signals obtained from predefined distances in
the waveguide. This compensator is derived from the Burg-
ers’ model and is independent of the stimulus used. Results
demonstrating a substantial reduction in the intermodulation
distortion and harmonic distortion in a specific frequency
band of interest over a multitude of test input stimuli are
included in this paper.

Index Terms— nonlinear acoustics, nonlinear distortion,
inverse problems, backpropagation algorithms, nonlinear sys-
tems.

1. INTRODUCTION

High sound pressure levels (SPL) waveforms suffer ‘wave
steepening’ distortion [1] as these propagate through air.
These waveforms are attenuated by the thermoviscous prop-
erties of air. As these acoustic waveforms propagate through
a waveguide, additional dissipation and dispersion is intro-
duced via interactions of these waves with the walls of the
waveguide [2] (Ch. 3, 5), [3]. The objective of this paper is
to correct for distortions introduced by the wave propagation
at specific observation points.

Waves propagate in air via compressions and rarefactions
of air molecules. Due to the properties of the medium and the
adiabatic gas laws for air [2] (Ch 2.), [1], the actual speed of
sound is a function of these sound pressure levels, the ratio of
specific heats for air and the air density.

Figure 1 shows measurements that demonstrate the effects
of wave propagation. Distortions introduced during propaga-
tion of sinusoidal waveforms of different frequency compo-
nents over a propagation distance of 3 m are shown in Figure
1. We assume that the driver is coupled with a cylindrical
waveguide, allowing for the use of the planar wave propaga-
tion assumption in our tests. The dashed red curves corre-
spond to 4 kHz., 6.3 kHz. and 8 kHz. signals measured at a
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distance of 3 m from the source. The measurements were ob-
tained by applying sinusoidal stimuli through the system such
that they are at 135 dB SPL at 3 m. The near-driver measure-
ment (made at a distance of 25.4mm) is presented as the bold
blue curve as reference.

Pressure waveforms experience three fundamental physi-
cal phenomena during propagation. First, a nonlinear mecha-
nism that introduces harmonic and intermodulation distortion
modifying the shape of the waveform. From the principal of
conservation of energy, these distortions are generated at the
cost of a reduction in the energy contained in the fundamental
tone in the stimulus [1]. Attenuation and dispersion are intro-
duced in the waveforms via the thermoviscous properties of
air and the waveguide coupled to the acoustic source.

The generation of intermodulation and harmonic distor-
tion stems from the variation in the speed of sound with
SPL of the propagating waveform [1]. This paper presents
a method to mitigate the effects of this distortion by creat-
ing a corrector, which uses the Burgers’ propagation model
for planar waves to model the distortions. This method be
used as a post/pre-compensator. The corrector propagates the
waveform in the opposite direction, i.e., the wave propagates
from the observation point to the acoustic source. This results
in the steepening of these waveforms in a direction opposite
to what was observed in traditional wave propagation. Our
results indicate a reduction in the harmonic distortion and
intermodulation distortion over a wide band of frequencies.

The rest of this paper is organized as follows: Section 2
reviews prior literature in this area. Section 3 first describes
the Burgers model for planar acoustic wave propagation.
This model leads to a backpropagation-based corrector. An
overview of the experimental setup, implementation details
and results using this corrector is contained in Section 4.
Conclusions and future work are provided in Section 5.

2. LITERATURE REVIEW

Klippel used the Webster horn equation to model nonlin-
ear wave propagation [4] and then constructed a truncated
Volterra series based compensator for propagation distortion
in [4,5]. This compensator was implemented as a lattice struc-
ture. Czerwinksi et. al. presented an implicit implementation
of the Poisson solution to compensate for propagation of sinu-
soidal waveforms emanating out of horn drivers in [6]. They
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Fig. 1. Comparison of the signals at the source (bold-blue) to those at 3 m (dashed-red) for sinusoidal waveforms with frequency
(a) 4 kHz., (b) 6.3 kHz. and (c) 8 kHz. The 3 m signals are at ≈ 135 dB SPL (relative to 20 µ Pa.).

also demonstrated the use of the Khokhlov-Zabolotskaya-
Kuznetsov (KZK) equation to model wave propagation in a
rectangular waveguide. In a recursive manner, over five itera-
tions of measuring predistorted sinusoidal input signals, they
were able to reduce the total harmonic distortion introduced
by the wave propagation in this rectangular waveguide. Dig-
ital backpropagation was first applied in [7] to compensate
for distortion introduced by ultrasonic wave propagation in
abdominal tissues. The corrector backpropagates a frequency
domain representation of the wave-field. Reference [8] de-
scribes an iterative method applied to distortion compensation
for horn waveguides by propagating the waveform backwards
from the mouth to the throat of the horn.

We use a Burgers’ model-based compensator, account-
ing for the effects of waveguide wall on the signal. These
boundary-layer effects were not included in the iterative im-
plementation presented in [6]. As pointed out in [6], the com-
bination of signals from different iterations will result in new
distortion products that corrupt the audio signal fidelity. Our
focus in this paper will be on the pre-compensation of non-
linear distortion to enhance the acoustic signals obtained at
pre-defined distances from the source.

3. PROPAGATION MODEL

The Burgers’ equation is a partial differential equation (PDE)
used to describe wave propagation assuming progressive pla-
nar waves [2] (Ch. 5), [9]. The Burgers’ model may be for-
mulated as a boundary-value problem (a signal p(x = 0, t)
is defined for x = 0, it is desired to compute the pressure,
p(xl, t), at a specific distance xl, xl > 0) using Lagrangian
coordinates as [2] (Ch. 3)

∂p(x, τ)

∂x
=

βp(x, τ)

ρ0c30

∂p(x, τ)

∂τ
+

δ

2c30

∂2p(x, τ)

∂τ2

−b
√

2

π

(
∂p(x, τ)

∂τ
∗ 1√

τ

)
(1)

where p corresponds to the pressure field at a location x. The
speed of sound for unperturbed air is given by c0. The Burg-
ers’ equation uses τ corresponding to the moving time frame

of reference (τ = t − x
c0

). The parameter β is the coefficient
of nonlinearity computed as β = 1

2 (γ+1), where γ is the ratio
of specific heats for an adiabatic process. The parameter ρ0
denotes the air density of undisturbed air and δ corresponds to
the sound diffusivity of air. The boundary layer parameter b is
a function of the dimensions of the waveguide and of medium
(in this case, air). This last term on the right hand side of (1)
arises from the assumption of a thin boundary layer in com-
parison to the diameter of the waveguide. Reference [10] uses
fractional derivatives to compute this term. This is replaced
here with the convolution operation (∗). The parameters δ and
b are computed as

δ = ν

(
4

3
+
µB
µ

+
γ − 1

Pr

)
, (2)
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1
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c20

[
1 +
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Pr

]
(3)

Here, ν is the kinematic viscosity, Pr is the Prandtl constant,
µ and µB correspond to the shear and bulk viscosities, re-
spectively and R is the radius of the cylindrical waveguide.
This wave steepening effect is obtained by the first term on
the right hand side of (1). The second and third terms in
(1) contribute to the effects of the dissipation and dispersion.
Equation (1) needs to be solved numerically as there exists no
analytical solution [2] (Ch. 5).
3.1. Digital backpropagation based corrector for nonlin-
ear wave propagation
Let us define a digital-backpropagation-based corrector that
propagates the waveform in a backward direction for some
pre-specified distance. This is expressed as a modified Burg-
ers’ model as,

∂p(x, τ)

∂x
= −1×

[
βp(x, τ)

ρ0c30

∂p(x, τ)

∂τ
+

δ
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∂τ2

−b
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(4)

Observe that the right hand side is the same as the Burg-
ers’ model in (1) except for the multiplier, −1. This con-
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Fig. 2. Hardware for experiments.

struction is equivalent to the design of a nonlinear inverse of
the propagation model. This simple structure of the correc-
tor thus retains the distortion generation mechanism. It also
includes terms that contribute to the inverse of the attenua-
tion and the compensation of the dispersion generation pro-
cesses. The corrector attempts to force the wave to steepen in
the opposite direction as compared to traditional wave propa-
gation. If the post-corrector was applied to the measured out-
puts recorded at some distance xp from the acoustic source,
the signal recorded at some other point at a distance xo from
the observation point in the waveguide will be identical to the
signal obtained at the output of the post-corrector assuming
the same distance (xo) of virtual propagation from the ob-
servation point. This approach can be used to pre- or post-
compensate for distortions assuming a pre-specified propaga-
tion distance. We do not provide proofs here because of page
limitations.

4. PERFORMANCE EVALUATION
4.1. Implementation details
We constructed the compensator as an explicit implementa-
tion using a grid in space and time. We used finite differ-
ences (FD) to construct the required derivatives of the pres-
sure signal with respect to the distance x and the retarded
time τ . The Courant-Friedrichs-Lewy (CFL) condition was
maintained when choosing the grid spacing to ensure stabil-
ity of the numerical implementation [11]. The grid spacing
was chosen so as to allow the variation of the speed of sound
to some upper bound, cmax. The grid spacing was computed
as ∆x ≥ cmax∆t [11], where ∆t was chosen to be the sam-
pling time. The Runge-Kutta algorithm was used for spatial
integration [12]. The parameter values of the model were cho-
sen as given in [13] and are summarized in Table 1. The con-
volution operation was implemented as multiplications in the
frequency domain.

Table 1. Parameters values for the equalizer.

R 12.7mm β 1.2 (dimensionless)
c0 346.57 m s−1 γ 1.4 (dimensionless)
cmax 2c0 Pr 0.707 (dimensionless)
∆x 7.2 mm δ 3.84× 10−5 m2s−1

P0 101325 Pa ν 1.53× 10−5 m2s−1

ρ 1.2 kg m−3 b 0.000929862 m−1s
µB 0.6µ µ 18.46× 10−6 kg m−1 s−1

4.2. Experimental setup
Figure 2 describes the schematic of the setup used for our
evaluations. The driver was coupled to a cylindrical waveg-

uide of diameter 2R = 25.4mm. The waveguide was as-
sumed to be terminated such that no reflections are fed back
into the waveguide. The driver output is denoted by pt(t). We
recorded signals px(t) at specific distances from the driver. If
the pre-compensator was applied to predistort the input sig-
nal, the resulting measurement, called pxc(t), should ideally
be identical to the signal pin(t). We included a band-limited
equalizer to compensate for the linear response of the driver
[14]. We assumed a perfect driver that does not introduce any
nonlinear distortions at these SPL levels. In the absence of
the pre-corrector, the input stimulus was applied to the driver
equalizer. All measurements from the waveguide were ban-
dlimited (by the sound card used for data acquisition) in these
experiments to a range 800 Hz. - 20 kHz. The corrector input
was also band-limited to this frequency range.
4.3. Evaluation
We compare the waveforms with and without correction at a
distance of 3 m. The testing stimuli contained sinusoids at 4
kHz., 6.3 kHz. and 8 kHz. signals and two multitone signals
sampled at 96 kHz.

Figure 3 describes the results of applying this corrector
to the three sinusoidal input waveforms. The time domain
waveforms corresponding to the pre-corrected measurement
signals were very similar to that of the ideal source signals for
the 4 kHz. and 6.3 kHz. cases. For the 8 kHz. tones, we see
clear discrepancies between the corrected and the ideal. Ta-
ble 2 shows the normalized root-mean-square error (NRMSE)
comparing the ideal to the pre-corrected and the 3 m measure-
ment waveforms. This indicated that the Burgers’ model may
be inadequate to fully characterize the propagation distortion
in cylindrical waveguides at high frequencies.

Figure 4 shows the estimated spectra of the measurements
for sinusoidal stimuli. The plots are constructed such that
the overlays are shifted along the frequency axis by 50 Hz.
This enables easier visualization of the different spectral lev-
els contained in the three signals in each plot. We see that the
corrector reduced the second and third-order harmonic distor-
tion by ≈ 7 and 20 dB SPL, respectively for the 4 kHz. case
and ≈ 4 and 14 dB SPL, respectively for the 6.3 kHz. case.
As can be expected from Figure 4c, we see minimal reduction
for the 8 kHz. case (second harmonic was reduced by ≈ 1
dB SPL). Figures 5a-b, compares the total harmonic distor-
tion (THD) (relative to the fundamental frequency) computed
for the first 30 harmonics in the bands of interest for the 3
m measurement and the pre-corrected signal. The THD was
computed as the ratio of the root-mean-square value of the
spectral powers of the harmonics in the frequency range of
interest to the power contained in the fundamental frequency
component in the distortion-free signal. For the 4 kHz. sig-
nal, the corrector reduced the THD from 7.29% to 0.95% for
the 133 dB SPL case and from 9.16% to 1.48% for the 135
dB SPL case. This reduction in THD was lower at higher
frequencies. For the 8 kHz. measurements, the compensation
reduced the THD from 29.7% to 26.3% for the 133 dB SPL
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Fig. 3. Comparison of the ideal (dashed-dot-black), the corrected (dashed-red) and 3 m uncorrected output (blue) signals for
different frequencies. The measurements were made at ≈ 135 dB SPL (relative to 20 µ Pa.).
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Fig. 4. Comparison of the spectra of the ideal (dash-dot-black), 3 m uncorrected output (bold-blue) and the corrected (dashed-
red) signals for different frequencies. These measurements were made at ≈ 135 dB SPL (relative to 20 µ Pa.) at 3 m.
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Fig. 5. Performance metrics for the 3 m uncorrected (blue)
and Precorrected (brown) signals : THD for the sinusoidal
signals 3 m output. Reduction in the IMD as a percentage
of the distortion-free signal power. The measurements were
made at the specified SPL levels (relative to 20 µ Pa.) at 3 m.

case and from 34.2% to 30.6% for the 135 dB SPL case as
reported in Figures 5a-b.

Figure 6 describes the performance of the corrector for
two different multitone stimuli. The corresponding reduction
in the intermodulation distortion (IMD) is displayed in Figure
5c. The intermodulation distortion was computed as a ratio of
the root-mean-square value of the spectral power contained in
the intermodulation products in the frequency band of inter-
est to the root-mean-square value of the power contained in
the stimulus frequencies. The nature of the generation of the
intermodulation products is determined by the tones present

Table 2. NRMSE(I-ideal, P-precorrected, 3 m-uncorrected)

dB SPL 133 133 135 135
Freq
(kHz.)

3 m vs I
(%)

P vs I
(%)

3 m vs I
(%)

P vs I
(%)

4 14.69 2.09 18.48 3.08
6.3 23.08 13.30 28.37 17.00
8 29.87 26.62 34.49 31.06

in the input stimulus [15].
From Figure 6a, we observed a reduction in intermodu-

lation distortion of the order ≈5-15dB SPL (the corrector re-
duced the IMD from 54.6% to 29.8%) . From Figure 6b, this
intermodulation distortion reduction is ≈10-20 dB SPL (the
corrector reduced the IMD from 13.6% to 4.08%). We were
able to perceive this reduction in intermodulation distortion
for both signals in our listening tests.

Possible sources of errors in the model include the vio-
lation of the planar wave propagation assumption. This as-
sumption is not valid above the resonant frequency of the tube
(fR = c0α1

2πR = 16.6kHz.) or if, near the driver, the velocity
components of the signal in the transverse direction be com-
parable to those in the direction of wave propagation [16].
Secondly, the driver was not perfectly linear at these SPL lev-
els in our experiments. Thirdly, the cascade of the driver and
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Fig. 6. Comparison of the spectra for measured output sig-
nals for multitone input signals : ideal (dash-dot-black), 3 m
output (bold-blue) and corrected (dashed-red) signals. These
measurements were made at ≈ 134 dB SPL (relative to 20 µ
Pa.) at 3 m.

its equalizer form a band-pass filter that eliminated some dis-
tortion products outside this band of interest. This reduced
the overall effectiveness of the corrector in that some of these
attenuated distortion products were required to compensate
for propagation distortion. We also used a non-ideal sound
card for data acquisition. Finally, complexity-accuracy trade
offs in the FD implementations may govern the quality of the
corrected signals. Even with these limitations, this form of
compensation guarantees a reduction of intermodulation and
harmonic distortion with distance of propagation.

5. CONCLUSIONS AND FUTURE WORK

This paper described a backpropagation-based compensation
algorithm for nonlinear propagation distortion in a cylindri-
cal waveguide. Experimental evaluations demonstrated a sub-
stantial reduction in harmonic and intermodulation distortions
particularly at lower frequencies. This approach could be
used as a pre-processing block to reduce the overall distor-
tion introduced by wave propagation with distance. We are
currently extending these ideas to non-cylindrical configura-
tions of acoustic waveguides and to cases where the planar
wave propagation assumption is not valid.
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