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ABSTRACT

Recent methods for microphone position calibration work with
sound sources at a priori unknown locations. This is convenient
for ad hoc arrays, as it requires little additional infrastructure. We
propose a flexible localization algorithm by first recognizing the
problem as an instance of multidimensional unfolding (MDU)—a
classical problem in Euclidean geometry and psychometrics—and
then solving the MDU as a special case of Euclidean distance matrix
(EDM) completion. We solve the EDM completion using a semidef-
inite relaxation. In contrast to existing methods, the semidefinite
formulation allows us to elegantly handle missing pairwise distance
information, but also to incorporate various prior information about
the distances between the pairs of microphones or sources, bounds
on these distances, or ordinal information such as “microphones 1
and 2 are more apart than microphones 1 and 15”. The intuition
that this should improve the localization performance is justified by
numerical experiments.

Index Terms— Microphone localization, array calibration, mi-
crophone array, Euclidean distance matrix, semidefinite relaxation,
multidimensional unfolding

1. INTRODUCTION

In many applications involving multiple microphones we need to
know their relative positions. Modern methods for microphone lo-
calization use arbitrarily positioned sound sources, as opposed to
using specialized calibration rigs with fixed geometry [2, 3, 4, 5].
Some of these methods can also deal with unknown times at which
the acoustic events appear [2, 3].

On the other hand, the mentioned methods (with the notable ex-
ception of [5]) require a full set of distance measurements. Further-
more, it is not straightforward to add a priori information about the
relative geometry of the microphones or of the acoustic events. Such
side information may take any of the following forms:

1. Distance between microphones 5 and 10 is 10 cm;
2. Calibration events 3, 4, and 5 are all within a distance of 20 cm;
3. Distance between microphones 1 and 2 is between 20 and 30

cm;
4. Distance between microphones 1 and 2 is larger than the dis-

tance between microphones 1 and 3.
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Intuition suggests that prior knowledge should improve calibration
performance. As we show later in numerical experiments, this is
indeed observed in practice.

To address potentially missing distances between the sources
and the microphones, and to incorporate the prior information about
the geometry, we propose to address microphone localization as a
special case of Euclidean distance matrix (EDM) completion.

We do it in two steps. First, we recognize the calibration prob-
lem as an instance of multidimensional unfolding (MDU)—a set of
tools used for data visualization in psychometrics. The MDU was
addressed in detail by Schönemann in 1970 [6]. Second, we solve
the MDU as a Euclidean distance matrix (EDM) completion prob-
lem.

EDMs are simply matrices of squared distances between points.
Algebraic manipulation allows us to establish a linear relationship
between the Gram matrix and the EDM, and then to use semidefinite
programming to solve the completion problem. The full semidefi-
nite program has a rank constraint, so what we actually use is the
semidefinite relaxation (SDR).

A constraint in our approach is that to use EDMs we need to
work with distances, so we need to assume some synchronization
between the microphones and the sources. The more challenging
problem of non-synchronized microphones and sources (see, e.g.,
[3]) is beyond the scope of this paper.

2. MICROPHONE CALIBRATION AND
MULTIDIMENSIONAL UNFOLDING

We define the microphone localization problem as the task of finding
the locations of m microphones given their distances to k acoustic
events.

Problem 1. Denote by R = [r1, . . . , rm] 2 Rd⇥m the unknown
microphone locations, and by S = [s1, . . . , sk] 2 Rd⇥k the un-
known source locations. The ambient dimensionality is denoted by d
(usually d = 2 or d = 3). The distance between the ith microphone
and jth source is

�ij = kri � sjk2 , (1)

where k · k denotes the Euclidean norm. We collect these distances
in the matrix �, and the task is then to recover R from �.

This standard scenario is described for example in [5]. The first
key step we make is that we recognize this problem as an instance
of metric multidimensional unfolding (MDU) [6]. Indeed, MDU is
defined as the problem of localizing a set of points partitioned into
two subsets, where we can measure the distances only between the
points belonging to different subsets.
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One of the early approaches to metric MDU is described by
Schönemann [6]. We go through the steps of the algorithm, and
then explain how we can solve the problem using EDMs. The goal
is to make a comparison between the MDU-specific approach and a
more general EDM formalization, and to emphasize the universality
and simplicity of the EDM approach.

We can write the definition of �ij (1) in the matrix form as

� = D(R,S)
def
= diag(R>R)1>�2R>S+1 diag(S>S), (2)

Consider now two geometric centering matrices of sizes m and k,
denoted Jm and Jk. The geometric centering matrix of size n is
defined as

J = I � 1
n
11>. (3)

Using this definition, we have

RJm = R� rc1
>, SJk = S � sc1

>, (4)

where rc is the geometric center of the microphones in R, and sc is
the geometric center of the sources in S. This means that

Jm�Jk = eR>
eS

def
= eG (5)

is a matrix of inner products between vectors eri and esj . We used
tildes to differentiate this from real inner products betwen ri and sj ,
because in (5), the points in eR and eS are referenced to different co-
ordinate systems. The centroids rc and sc generally do not coincide.
There are different ways to decompose eG into a product of two full
rank matrices A and B,

eG = A>B. (6)

We could for example use the SVD, eG = U⌃V >, and set A> =
U and B = ⌃V >. Any two such decompositions are linked by
some invertible transformation T 2 Rd⇥d,

eG = A>B = eR>T�1T eS. (7)

We can now write down the conversion rule between the sought mi-
crophone positions and the matrices A and B which we can com-
pute from �,

R = T>A+ rc1
>

S = (T�1)>B + sc1
>,

(8)

where A and B can be computed according to (6). Because we
cannot reconstruct the absolute position of the point configuration,
we can arbitrarily set rc = 0, and sc = ↵e1. Recapitulating, we
have that

� = D
⇣

T>A, (T�1)>B + ↵e11
>
⌘

, (9)

and the problem is reduced to computing T and ↵ so that (9) hold,
or in other words, so that the right hand side be consistent with the
data �. We reduced MDU to a relatively small problem: in 3D, we
need to compute only ten scalars. Schönemann [6] gives an alge-
braic method to find these parameters, and mentions the possibility
of least squares, while Crocco, Bue and Murino [5] propose a differ-
ent approach using non-linear least squares.

The described procedure seems quite convoluted. Rather, we
see MDU as a special case of matrix completion. To explain how,
we first intruduce Euclidean distance matrices.

3. EUCLIDEAN DISTANCE MATRICES

An EDM corresponding to the point set X = [x1, . . . ,xn] is the
matrix D defined as

dij = kxi � xjk2 , (10)

[1] where k · k is the Euclidean norm. By expanding the norm, we
see that D can be computed as

D = K(G)
def
= diag(G)1> + 1 diag(G)> � 2G, (11)

where G def
= X>X is the Gram matrix. A straightforward computa-

tion shows that G can be obtained from D as

G = �1
2
JDJ , (12)

where J is the geometric centering matrix of size n. This holds be-
cause the nullspace of J contains the rank-one matrices that appear
in (11); that is, the terms diag(G)1> + 1 diag(G)> are annihilated
by J . We note that many different Gramians G (corresponding to
different translations of the point set) yield the same EDM D. Re-
lation (12) then computes a particular G, namely that one for which
the centroid of the point set is at the origin (hence the name for J ).
For further details and intuitions about this, see [1].

3.1. EDM Completion

In a typical EDM problem, we have to localize the point set, but
the distances are noisy and some are missing. TOA measurements
(hence the distances) are subject to noise, sampling errors and model
mismatch.

Missing entries arise because of limited range or occlusions, or
because the nodes are asymmetric by definition. In microphone cal-
ibration we have two types: microphones and calibration sources.
This results in a particular block structure of the missing entries (we
will come back to this later, but you can fast-forward to Fig. 1 for
an illustration). We summarize the denoising and the completion
problems as follows:

Problem 2. Let D be an EDM corresponding the a point set X .
We are given a noisy observation of the distances between p 

�

n
2

�

pairs of points from X . That is, we have a noisy measurement of 2p
entries in D,

edij = dij + ✏ij , (13)

for (i, j) 2 E, where E is some index set, and ✏ij absorbs all errors.
The goal is to reconstruct the point set X̂ in the given embedding
dimension, so that the entries of K(X̂>X̂) are close in some metric
to the observed entries edij .

To concisely write down completion problems, we define the
mask matrix W as follows,

wij
def
=

(

1, (i, j) 2 E

0, otherwise.
(14)

This matrix then selects elements of an EDM through a Hadamard
(entrywise) product. For example, to compute the norm of the
difference between the observed entries in A and B, we write
kW � (A�B)k.
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4. SEMIDEFINITE RELAXATION

4.1. Semidefinite Programming

A characterization of EDMs by Gower [7] states that D is an EDM
if and only if the corresponding geometrically centered Gram matrix
� 1

2JDJ is positive-semidefinite. Thus, it establishes a one-to-one
correspondence between the cone of EDMs, denoted by EDMn, and
the intersection of the symmetric positive-semidefinite cone Sn

+ with
the geometrically centered cone Sn

c . The latter is defined as the set
of all symmetric matrices whose column sum vanishes,

Sn
c =

n

G 2 Rn⇥n | G = G>, G1 = 0
o

. (15)

We can use this correspondence to cast EDM completion and
approximation as semidefinite programs. While the above charac-
terization describes an EDM of an n-point configuration in any di-
mension, we are often interested in situations where d ⌧ n. It is
easy to adjust for this case by requiring that the rank of the centered
Gram matrix be bounded. One can verify that

D = K(X>X)

a↵dim(X)  d

)

()
(

� 1
2JDJ ⌫ 0

rank(JDJ)  d,
(16)

when n � d. That is, EDMs with a particular embedding dimension
d are completely characterized by the rank and definiteness of JDJ .

Now we can write the following rank-constrained semidefinite
program for solving Problem 2,

minimize
G

�

�

�

W �
⇣

eD �K(G)
⌘

�

�

�

2

F

subject to rank(G)  d

G 2 Sn
+ \ Sn

c ,

(17)

where W is the mask matrix that selects only the observed entries.
The cost function computes how far eD is from the estimated EDM
K(G) on the observed entries. The second constraint is just a short-
hand for writing G ⌫ 0, G1 = 0 . We note that this corresponds to
minimizing the well-known s-stress cost function [8].

4.2. Relaxation

Unfortunately, the rank property makes the feasible set in (17) non-
convex, and solving it exactly becomes difficult. This makes sense,
as we know that s-stress is not convex. Nevertheless, we may relax
the hard problem, by simply omitting the rank constraint, and hope
to obtain a solution with the correct dimensionality,

minimize
G

�

�

�

W �
⇣

eD �K(G)
⌘

�

�

�

2

F

subject to G 2 Sn
+ \ Sn

c .
(18)

We call (18) a semidefinite relaxation (SDR) of the rank-constrained
program (17). If the embedding dimension of the solution is larger
than desired, we project it in the lower-dimensional space by thresh-
olding the eigenvalues of G.

The constraint G 2 Sn
c , or equivalently, G1 = 0 , means that

there are no strictly positive definite solutions (G has a nullspace,
so at least one eigenvalue must be zero). In other words, there exist
no strictly feasible points [9]. This may pose a numerical problem,
especially for various interior point methods. The idea is then to
reduce the size of the Gram matrix through an invertible transforma-
tion, somehow removing the part of it responsible for the nullspace.

Algorithm 1 Semidefinite Relaxation (Matlab/CVX)
1 function [EDM, X] = sdr_complete_edm(D, W, lambda)

2

3 n = size(D, 1);

4 x = -1/(n + sqrt(n));

5 y = -1/sqrt(n);

6 V = [y

*

ones(1, n-1); x

*

ones(n-1) + eye(n-1)];

7 e = ones(n, 1);

8

9 cvx_begin sdp

10 variable G(n-1, n-1) symmetric;

11 B = V

*

G

*

V';

12 E = diag(B)

*

e' + e

*

diag(B)' - 2

*

B;

13 maximize trace(G) ...

14 - lambda

*

norm(W .

*

(E - D), 'fro');

15 subject to

16 G >= 0;

17 cvx_end

18

19 [U, S, V] = svd(B);

20 EDM = diag(B)

*

e' + e

*

diag(B)' - 2

*

B;

21 X = sqrt(S)

*

V';

In what follows, we describe how to construct this smaller Gram
matrix.

A different, equivalent way to phrase Gower’s EDM characteri-
zation [7] is by the following statement: a symmetric hollow matrix
D is an EDM if and only if it is negative semidefinite on {1}?
(on all vectors t such that t>1 = 0). Let us construct an orthonor-
mal basis for this orthogonal complement—a subspace of dimension
(n � 1)—and arrange it in the columns of matrix V 2 Rn⇥(n�1).
We demand

V >1 = 0

V >V = I.
(19)

There are many possible choices for V , but all of them obey that
V V > = I � 1

n11
> = J . The following choice is given in [10],

V =

2

6

6

6

6

6

4

p p · · · p
1 + q q · · · q
q 1 + q · · · q
... · · ·

. . .
...

q q · · · 1 + q

3

7

7

7

7

7

5

, (20)

where p = �1/(n+
p
n) and q = �1/

p
n.

With the help of the matrix V , we can now construct the sought
Gramian with reduced dimensions. For an EDM D 2 Rn⇥n,

G(D)
def
= �1

2
V >DV (21)

is an (n� 1)⇥ (n� 1) PSD matrix. This can be verified by substi-
tuting (21) in (11). Additionally, we have that

K(V G(D)V >) = D. (22)

Indeed, H 7! K(V HV >) is an invertible mapping from Sn�1
+ to

EDMn whose inverse is exactly G. Using these notations we can
write down an equivalent optimization program that is numerically
more stable than (18) [10]:

minimize
H

�

�

�

W �
⇣

eD �K(V HV >)
⌘

�

�

�

2

F

subject to H 2 Sn�1
+ .

(23)
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Fig. 1: Microphone calibration as an example of MDU. We can mea-
sure only the propagation times from acoustic sources at unknown
locations, to microphones at unknown locations. The correspond-
ing revealed part of the EDM has a particular off-diagonal structure,
leading to a special case of EDM completion.

On the one hand, with the above transformation the constraint
G1 = 0 became implicit in the objective, as V HV ⊤1 ≡ 0 by
(19); on the other hand, the feasible set is now the full semidefinite
cone Sn−1

+ . Still, as Krislock & Wolkowicz mention [9], by omitting
the rank constraint we allow the points to move about in a larger
space, so we may end up with a higher-dimensional solution even if
there is a completion in dimension d.

There exist various heuristics for promoting lower rank. One
such heuristic involves the trace norm—the convex envelope of rank.
The trace or nuclear norm is studied extensively by the compressed
sensing community. In contrast to the common wisdom in com-
pressed sensing, the trick here is to maximize the trace norm, not to
minimize it. The mechanics are as follows: maximizing the sum of
squared distances between the points will stretch the configuration
as much as possible, subject to available constraints. But stretch-
ing favors smaller affine dimensions (imagine pulling out a roll of
paper, or stretching a bent string). Maximizing the sum of squared
distances can be rewritten as maximizing the sum of norms in a cen-
tered point configuration—but that is exactly the trace of the Gram
matrix G = − 1

2JDJ [11]. This idea has been successfully put
to work by Weinberger and Saul [11] in manifold learning, and by
Biswas et al. in SNL [12].

Noting that trace(H) = trace(G) because trace(JDJ) =
trace(V ⊤DV ), we write the following SDR,

maximize
H

trace(H)− λ
∥∥∥W ◦

(
D̃ −K(V HV ⊤)

)∥∥∥
F

subject to H ∈ Sn−1
+ (24)

Here we opted to include the data fidelity term in the Lagrangian
form, as proposed by Biswas [12], but it could also be moved to
constraints. Matlab/CVX code for this relaxation is given in Algo-
rithm 1 [13].

4.3. Unfolding as Matrix Completion

We now frame Problem 1 (MDU) as a special case of Problem 2
(EDM completion). Let the microphones and the sources be repre-
sented by a set of n = k + m points, ascribed to the columns of
matrix X = [R S]. Then K(X⊤X) has a special structure as seen
in Fig. 1,

K(X) =

[
K(R) D(R,S)

D(S,R) K(S)

]
, (25)

where the upper-right and the lower-left blocks are measured, and
the diagonal blocks are unknown. Thus we define the mask matrix
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Fig. 2: Comparison of two algorithms applied to multidimensional
unfolding with varying number of acoustic events k and noisy dis-
tances. For every number of acoustic events, we generated 1000 re-
alizations of m = 20 microphone locations uniformly at random in
a unit cube. In addition to the number of acoustic events, we varied
the amount of random jitter added to the distances. Jitter was drawn
from a centered uniform distribution, with the level increasing in the
direction of the arrow, from U [0, 0] (no jitter) for the darkest curve at
the bottom, to U [−0.15, 0.15] for the lightest curve at the top, in 11
increments. For every jitter level, we plotted the mean relative error
∥D̂ −D∥F /∥D∥F for all algorithms.
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Fig. 3: Comparison of the influence of prior information on the
reconstruction accuracy. For every number of acoustic events, we
generated 500 realizations of 15 microphones inside the unit cube
(acoustic event were also generated inside the unit cube). Uniform
jitter between ±7 cm was added to the distances measurements and
then varying percentage of microphone pairwise distances was re-
vealed within ±15 % of the true distance. The curves show the ab-
solute reconstruction error ∥D̂−D∥F . Mean value of the Frobenius
norm of the true EDM was around 13 for 20 acoustic events, so the
absolute error of 1 can be considered as successful localization.

for MDU as

WMDU
def
=

[
0m×m 1m×k

1k×m 0k×k

]
. (26)

With this matrix, we can simply invoke the SDR in Algorithm 1.

4.4. Integrating Prior Knowledge

The attractiveness of the formulation (24) lies in its flexibility: it is
easy to insert many useful constraints. Unlike with the methods that
are developed specifically for microphone calibration, if we miss one
or more source-microphone distances, (24) still works with a trivial
modification of the mask matrix W . Such situations arise commonly
in practice.
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We can also easily insert estimates or bounds on the distances.
For example, we may have a rough idea of the distances between
some pairs of microphones, as well as a rough idea of the distances
between some pairs of acoustic events. All of these constraints are
simply linear constraints on D = K(V HV >). Let us give some
examples. Upper and lower bounds can be specified as follows

WL � [K(V HV >)�L] � 0

WU � [K(V HV >)�U ]  0,
(27)

where matrices WL and WU select the elements for which we have
bounds, and L and U contain the bounds.

We can also plug in ordinal information about the distances. For
example, we can require that the distance between the microphones
i and j be smaller than the distance between microphones i and k.
This is written simply as

e>
i K(V HV >)(ej � ek)  0, (28)

where ei is the ith canonical basis vector. Many other useful con-
straints can be modeled as linear constraints on K.

5. NUMERICAL EXPERIMENTS

We demonstrate the usefulenss of the semidefinite relaxation in two
different scenarios. First, we address the problem of localizing the
microphone array from the set of pairwise distance measurements
in the presence of noise, and compare the SDR with the method of
Crocco, Bue and Murino [5]. The results are illustrated in Fig. 2.
We observe that for the noiseless case, the SDR performs better, giv-
ing perfect reconstruction for all but the lowest number of acoustic
events. It also yields more accurate reconstructions at higher noise
levels. When the number of acoustic events is low, the method from
[5] performs better.

Second, we explore the effect of adding prior information on
the distances between the microphones in Fig. 3. We add consider-
able jitter to measurements (±7 cm within a meter is surpassed by
any method for measuring distance using times of flight). We then
include additional constraints: upper and lower bounds at 15% of
the true distance for varying percentage of the pairwise microphone
distances. It is clearly observed that adding prior information can
improve the localization performance. A comparison with other ap-
proaches is not possible as they do not allow to easily integrate such
constraints.

6. CONCLUSION

We have shown how to rephrase the microphone localization prob-
lem as a Euclidean distance matrix completion problem. We propose
to solve it using a semidefinite relaxation. Our formulation can han-
dle missing source-microphone distance, and it allows us to easily
integrate arbitrary linear constraints on the distance matrix. These
constraints may represent various bounds and relations between the
distances in the source-microphone system.

An important challenge is to extend this method to unknown
source emission times. The matrix that corresponds to this case ex-
hibits no straightforward rank property that we could exploit.

Another challenge is to better enforce the rank property. Trace
maximization does a good job when the number of microphones and
the number of calibration events is sufficiently large. But for small
arrays and large noise, the solution obtained is not realizible in the

desired embedding dimension, so the performance of the method de-
teriorates, unlike in [5]. We should seek efficient methods to enforce
the correct rank in these smaller-size problems.
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