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ABSTRACT

Researchers in some of the most active fields of science,
including, e.g., geophysics or systems biology, have to deal
with very-large-scale stochastic dynamic models of real world
phenomena for which conventional prediction and estimation
methods are not well suited. In this paper, we investigate the
application of a novel nested particle filtering scheme for joint
Bayesian parameter estimation and tracking of the dynamic
variables in a high dimensional state space model –namely a
stochastic version of the two-scale Lorenz 96 chaotic system,
commonly used as a benchmark model in meteorology
and climate science. We provide theoretical guarantees on
the algorithm performance, including uniform convergence
rates for the approximation of posterior probability density
functions of the fixed model parameters.

Index Terms— Particle filtering, data assimilation,
Bayesian parameter estimation, convergence analysis, kernel
density estimation.

1. INTRODUCTION

Researchers in some of the most active fields of science have
to deal with very large scale stochastic dynamic models of
real world phenomena for which conventional prediction and
estimation methods are not well suited. In fact, state-of-the-
art methods for Bayesian model inference in computational
statistics, e.g., the popular particle Markov chain Monte Carlo
(pMCMC) [1] and sequential Monte Carlo square (SMC2)
[2] algorithms, are batch techniques and, therefore, they
are not well suited to the processing of long observation
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sequences. Although some recursive algorithms exist [3],
they only yield maximum likelihood (point) estimates for the
parameters, and hence they are subject to various convergence
(and complexity) issues when the likelihood is multimodal,
contains singularities or cannot be computed exactly.

In this paper, we investigate a nested particle filtering (PF)
scheme for the Bayesian estimation of the dynamic variables
and the static parameters of state space models. The method is
similar to the SMC2 algorithm, but enjoys a purely recursive
structure that makes it better suited for online estimation and
dynamical systems (see [4] for additional details). We apply
the new scheme to a stochastic version of the (chaotic) Lorenz
96 system. The latter displays the basic physical features of
atmospheric dynamics and, for this reason, the deterministic
version of this model is commonly used as a benchmark
for data assimilation [5] and parameter estimation techniques
[6] in meteorology and climate science. We illustrate the
performance of the proposed scheme by means of computer
simulations on a stochastic two-scale Lorenz 96 model [6]
with 16 slow and 160 fast dynamic variables as well as several
unknown parameters.

Besides the numerical results, we establish theoretical
guarantees on the performance of the proposed scheme. In
particular, we prove that kernel approximations of posterior
probability density functions (pdf’s) of the model parameters
converge uniformly over the parameter space. Furthermore,
we obtain explicit convergence rates that link the computa-
tional cost of the PF algorithm, the kernel bandwidth and the
dimension of the parameter space.

The rest of the paper is organised as follows. In Section
2 we state the Bayesian inference problem to be solved.
The proposed nested particle filtering scheme is outlined in
Section 3. Kernel density estimators, based on the output of
the nested PF algorithm, are investigated in Section 4. Section
5 contains computer simulation results and, finally, Section 6
is devoted to the conclusions.
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2. PROBLEM STATEMENT

2.1. Notation

We use upper-case letters to denote random variables (r.v.’s),
e.g., X , and lower-case letters to indicate their realisations,
e.g., X = x. Given a r.v. X with pdf α(x), the integral of
a real function f(x) with respect to (w.r.t.) the probability
measure α(x)dx is denoted (f,α) !

∫

f(x)α(x)dx. We
use r.v. independently of the dimension of X , i.e., X can
be a random vector. The set of bounded real functions on
the set X is denoted B(X ). If f ∈ B(X ), then ∥f∥∞ !

supx∈X |f(x)| < ∞.

2.2. State space models

A state space model can be described in terms of two random
sequences, {Xt}t≥0 and {Yt}t≥1, and a r.v., Θ, taking values
in the sets X ⊆ Rdx , Y ⊆ Rdy and S ⊂ Rdθ , where dx,
dy and dθ are the corresponding dimensions of X , Y and S,
respectively. We refer to the sequence {Xt}t≥0 as the state
(or signal) process and we assume that it is a homogeneous
Markov chain, with a priori pdf τ0(x) and Markov transition
kernel τθ(xt|xt−1)dxt, indexed by a realisation Θ = θ.

The sequence {Yt}t≥1 is the observation process. Each
r.v. Yt is assumed to be conditionally independent of all other
observations given Xt and Θ, namely

Pt {Yt ∈ A|x0:t, θ, {yk}k ̸=t} = Pt {Yt ∈ A|xt, θ}

for any Borel set A, where Pt denotes the probability measure
for the triple ({Xn}n≤t, {Yn}n≤t,Θ). We assume that the
conditional pdf of Yt given Xt, denoted gθ(yt|xt) ≥ 0,
can be evaluated up to a (possibly unknown) proportionality
constant. Given Yt = yt, the function gyt

θ (xt) ! gθ(yt|xt) on
the state space is the likelihood of Xt.

The a priori pdf of the parameter r.v. Θ is denoted µ0(θ)
(note that X0 and Θ are a priori independent). The set
{µ0, τ0, τθ, {gyt

θ }t≥1} describes a stochastic Markov state-
space model in discrete time. Note that the model is indexed
by the dθ-dimensional random parameter Θ ∈ S.

2.3. Stochastic Lorenz 96 model

The two-scale Lorenz 96 model is a deterministic system
of nonlinear differential equations that displays chaotic
dynamics; see, e.g., [6]. The system dimension, i.e., the
number of dynamic variables, can be scaled arbitrarily.
A stochastic version of the model can be easily obtained
by converting each differential equation into a stochastic
differential equation driven by an independent and additive
Wiener process. Here, for conciseness, we describe the
difference equations that result from the application of the
Euler-Maruyama integration method to a model with J slow
variables, Zj , j = 0, . . . , J − 1, and L fast variables per slow

variable, Z̄l, l = 0, ..., JL− 1. We then obtain

Zj,n = Zj,n−1 −∆Zj−1,n−1(Zj−2,n−1 − Zj+1,n−1)

+∆

⎡

⎣f − Zj,n−1 −
hc

b

Lj−1
∑

l=(j−1)L

Z̄l,n−1

⎤

⎦

+
√
∆σUj,n, (1)

Z̄l,n = Z̄l,n−1 −∆cbZ̄l+1,n−1(Z̄l+2,n−1 − Z̄l−1,n−1)

+∆

[

cf

b
− cZ̄l,n−1 +

hc

b
Z⌊ l−1

L ⌋,n−1

]

+ σ̄Ūl,n,

where ∆ > 0 denotes the discretisation period, n represents
discrete time, f is a forcing parameter that controls the tur-
bulence of the chaotic flow, c determines the time scale of
the fast variables, h controls the strength of the coupling be-
tween the fast and slow variables, b determines the amplitude
of the fast variables, {Uj,n, Ūl,n}l,j,n≥0 are sequences of in-
dependent and identically distributed (i.i.d.) standard Gaus-
sian r.v.’s, and σ, σ̄ > 0 are scale parameters.

We assume that observations can only be collected from
this system once every no discrete time steps. Therefore, the
observation process has the form

Yt = [Z1,tno , Z2,tno , . . . , ZJ,tno ]
⊤ + Vt, (2)

where t = 1, 2, ... and {Vt}t≥1 is a sequence of i.i.d.
r.v.’s with common pdf N (vt; 0,σ2

yIJ ), which denotes a J-
dimensional Gaussian density with 0 mean and covariance
matrix σ2

yIJ , where IJ is the J × J identity matrix.
In computer experiments, system (1) is often employed

to generate both ground-truth values for the slow variables
{Zj,n}j,n≥0 and synthetic observations, {Yt}t≥1. As a
forecast model for the slow variables it is common to use the
difference equation [6]

Zj,n = Zj,n−1 −∆Zj−1,n−1(Zj−2,n−1 − Zj+1,n−1)

+ ∆ [f − Zj,n−1 − ℓ(Zj,n−1, a)] +
√
∆σUj,n, (3)

where a = [a1, a2]⊤ ∈ R2 is a (constant) parameter vector
and function ℓ(Zj,n−1, a) ∈ R is an ansatz for the coupling

term hc

b

∑Lj−1
l=(j−1)L Z̄l,n−1 in (1), to be specified later.

Equations (3) and (2) describe a state space model that
can be expressed in terms of the general notation in Section
2.2. The state process at time n is X̃n = [Z0,n, . . . , ZJ−1,n]⊤

and the transition pdf from time n− 1 to time n is

τ̃θ(x̃n|x̃n−1) = N (x̃n;Ψ(x̃n−1, θ),σ
2
xIJ ), (4)

where θ = [f, a⊤]⊤ ∈ R3, σ2
x = ∆σ2 and Ψ(x̃n−1, θ) ∈ RJ

is the deterministic transformation that accounts for all the
terms on the right hand side of (3) except the noise contri-
bution

√
∆σUj,n. Since we only collect observations every

no∆ continuous-time units, we need to put the dynamics of
the states on the same time scale as the observation process
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τθ(xt|xt−1) =

∫

. . .

∫

τ̃θ(xt|x̃tno−1)
no−2
∏

i=1

τ̃θ(x̃tno−i|x̃tno−i−1)τ̃θ(x̃(t−1)no+1|xt−1)
no−1
∏

j=1

dx̃tno−j . (5)

{Yt}t≥1 in Eq. (2). If we define Xt = X̃tno ∈ X = RJ

then the transition density from Xt−1 to Xt follows readily
from (4), as shown in Eq. (5) at the top of this page. While
τθ(xt|xt−1) cannot be evaluated in closed form, it is straight-
forward to draw a sample from Xt|xt−1 by simply running
Eq. (3) no times, with starting point xt−1. The likelihood
function is

gyt(xt) ∝ exp

{

− 1

2σ2
y

J
∑

r=1

(yr,t − xir ,t)
2

}

,

which follows from (2) and is independent of Θ for this
particular model.

2.4. Problem statement

Assume that the parameters in (3) are random, with prior pdf
µ0. Then, the goal is to approximate sequence of conditional
pdf’s of the parameters Θ = [F,A1,A2]⊤ given the available
observations at each time step t. We write µt(θ) to denote
the pdf of Θ conditional on Y1:t = y1:t. This pdf can be
recursively decomposed as µt(θ) ∝ λt,θ(yt)µt−1(θ), where
λt,θ(yt) is the pdf of the r.v. Yt conditional on Y1:t−1 =
y1:t−1 and Θ = θ. The latter density, in turn, can be written
as an integral, namely λt,θ(yt) = (gyt , ξt,θ), where ξt(xt,θ)
is the predictive pdf of the state vector Xt conditional on the
observations Y1:t−1 = y1:t−1 and the parameter Θ = θ. It is
a well known result [1, 2, 4] that the sequence of probability
measures ξt,θ(xt)dxt can be recursively approximated using
a standard PF algorithm, and hence the integral (gyt , ξt,θ) can
be numerically approximated as well.

In next section, we outline a novel PF algorithm that
enables the recursive approximation of the pdf’s µt, t =
1, 2, ..., and produces Bayesian estimates of the state variables
Xt, t = 1, 2, ..., as a by-product.

3. NESTED PARTICLE FILTERING SCHEME

3.1. Standard particle filter

Assume Θ = θ are given parameters. The standard
particle filter is a recursive Monte Carlo algorithm for
the approximation of the sequence of predictive probability
measures ξt,θ(xt)dxt on the state space X , as well as the
associated filtering probability measures φt,θ(xt)dxt, where
φt,θ is the density of Xt conditional on given observations
Y1:t = y1:t and the parameter θ.

At time t = 0, we generate M samples (termed particles),

x(i)
0 ∼ τ0, i = 1, ...,M , from the prior density τ0. At every

time t > 0, we apply the algorithm below, where δx′(dx)
denotes the unit delta measure located at x′.

Algorithm 1 We take as inputs the parameter θ, the obser-
vation yt and the particle approximation of φt−1,θ(xt)dxt at

time t− 1, φMt−1,θ(dxt) =
1
M

∑M
i=1 δx(i)

t−1
(dxt).

Computations:

• Generate new particles x̄(i)
t ∼ τ(xt|x(i)

t−1) and compute

normalised importance weights w(i)
t ∝ gyt(x̄(i)

t ), i =
1, ...,M .

• Resample: for i = 1, ...,M , assign x(i)
t = x̄(j)

t with

probability w(j)
t , j ∈ {1, ...,M}.

Outputs: New particle approximations ξMt,θ(dxt) =
1
M

∑M
i=1 δx̄(i)

t
(dxt), φMt,θ(dxt) = 1

M

∑M
i=1 δx(i)

t
(dxt), and

λMt,θ(yt) = (gyt , ξMt,θ) =
1
M

∑M
i=1 g

yt(x̄(i)
t ).

Given any bounded function f ∈ B(X ) and any p ≥ 1, it
can be proved [7] under mild assumptions that

∥(f,φMt,θ)− (f,φt,θ)∥p ≤ ct,θ√
M

,

where ct,θ is constant w.r.t. M . Similar convergence results
hold for (f, ξMt,θ) and λMt,θ(yt).

3.2. Proposed algorithm

We outline a PF scheme for the recursive approximation of
the sequence of probability measures µt(θ)dθ, t = 1, 2, ....
See [4] for full details. It is a nested Monte Carlo scheme,
where Algorithm 1 is used to compute importance weights for
particles in the parameter space S. We assume that the latter
is compact. In particular, we select S = [f−, f+]× [a−, a+]×
[a−, a+] ⊂ R3 for some known and finite bounds f− < f+

and a− < a+.

Algorithm 2 At time t = 0, draw N i.i.d. particles θ(i)0

from µ0(θ) and NM i.i.d. particles x(i,j)
0 from τ0(x0),

i = 1, ..., N and j = 1, ...,M . Let µN
0 = 1

N

∑N
i=1 δθ(i)

0

and φM
0,θ(i)

0

= 1
M

∑M
j=1 δx(i,j)

0
. Choose a conditional pdf

κN (θ|θ′) on the parameter space S that satisfies, for at least

some p ≥ 1,

sup
θ′∈S

∫

∥θ − θ′∥pκ(θ|θ′)dθ ≤ cpκ
N

p
2

. (6)

where cκ is some constant independent of N .

Computations: Given µN
t−1 = 1

N

∑N
i=1 δθ(i)

t−1
, the N sets

χi,M
t−1 = {x(i,j)

t−1 }Mj=1 and the new observation yt, take the

following steps at time t.
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• Draw N new particles θ̄(i)t ∼ κN (θ|θ(i)t−1), i = 1, ..., N .

• Run Algorithm 1 N times, with inputs Θ = θ̄(i)t and

χi,M
t−1 = {x(i,j)

t−1 }Mj=1, to obtain

normalised importance weights: λ(i)t ∝ λM
t,θ̄

(i)
t

(yt),

updated particles in X : χ̄i,M
t = {x(i,j)

t }Mj=1,

for i = 1, ..., N .

• Resample: for i = 1, ..., N , assign θ(i)t = θ̄(l)t and

χi,M
t = χ̄l,M

t with probability λ(l)t , l ∈ {1, ..., N}.

Outputs: The approximations µN
t (dθ) = 1

N

∑N
i=1 δθ(i)

t
(dθ)

and sets χi,M
t = {x(i,j)

t }Mj=1, for i = 1, ..., N .

Given µN
t and the collection of sets χi,M

t , i = 1, ..., N ,
it is straightforward to obtain posterior estimates of the
parameters and the dynamic variables, e.g.,

E[Θ|y1:t] ≈
1

N

∑

θ(i)t , E[Xt|y1:t] ≈
1

NM

N,M
∑

i=1,j=1

x(i,j)
t .

The inequality (6) simply states that the pdf κN (θ|θ′) should
have a sufficiently small variance (in all directions). A simple
truncated Gaussian kernel with suitable variance, e.g.,

κN (θ|θ′) ∝ IS(θ)N
(

θ; θ′,
c

N
I3

)

,

where IS(θ) = 1 if θ ∈ S and 0 otherwise, suffices to make
(6) hold for all p ≥ 1 (and guarantee convergence [4]).

4. KERNEL DENSITY ESTIMATORS

We aim at approximating the posterior pdf of the parameters
F and A ∈ R2. If Θ = [F,A⊤]⊤, then we denote µt(θ) =
µt(f, a) and calculate the posterior marginal densities as

µt,F(f) =

∫

µt(f, a)da, µt,A(a) =

∫

µt(f, a)df.

Similary, the particle approximation µN
t (dθ) = µN

t (df × da)
yields the approximate marginal probability measures

µN
t,F(df) =

∫

[a−,a+]2
µN
t (df × dA) =

1

N

N
∑

i=1

δ
f
(i)
t
(df),

µN
t,A(da) =

∫

[f−,f+]
µN
t (df × dA) =

1

N

N
∑

i=1

δ
a
(i)
t
(da),

where we have used the obvious notation θ(i)t = [f(i)t , a(i)
⊤

t ]⊤.
Let φ : R → R and ψ : R2 → R be continuous and

bounded pdf’s, both with finite second order moments, and,
for any positive bandwidths h, h̃ > 0, let

φuh(u
′) = h−1φ

(

u− u′

h

)

and ψv
h̃
(v′) = h̃−2ψ

(

v − v′

h̃

)

.

Then, we build estimators of µt,F(f) and µt,A(a) as [7]

µ̂N
t,F(f) = (φfh, µ

N
t,f) =

1

N

N
∑

i=1

φh(f − f
(i)
t ),

µ̂N
t,A(a) = (ψa

h̃
, µN

t,A) =
1

N

N
∑

i=1

ψh̃(a− a
(i)
t ).

Both estimators converge uniformly over the support sets of
the r.v.’s F and A, provided that the jittering kernel κN in
Algorithm 2 and the bandwidths h and h̃ are suitably chosen.
This is formally given below.

Theorem 1 Choose κN such that the inequality (6) holds for

every p ≥ 1 and select h ≥ N− 1
6 and h̃ ≥ N− 1

10 . If µ0(θ)
is Lipschitz, then there exist almost surely (a.s.) finite r.v.’s U ϵ

and W ϵ such that

sup
f∈[f−,f+]

|µ̂N
t,F(f) − µt,F(f)| ≤ N− 1−ϵ

6 U ϵ, (7)

sup
a∈[a−,a+]2

|µ̂N
t,A(a)− µt,A(a)| ≤ N− 1−ϵ

10 W ϵ, (8)

for any, arbitrarily small, ϵ > 0. In particular,

lim
N→∞

|µ̂N
t,F(f)− µt,F(f)| = lim

N→∞
|µ̂N

t,A(a)− µt,A(a)| = 0

a.s. and uniformly over the parameter support.

Proof. A full proof is too long to be given here, hence we just
sketch the argument. The key is to prove that the optimal
filters φt,θ(xt), t ≥ 0, are Lipschitz functions of θ. It is
straightforward to prove that τθ(xt|xt−1) is Lipschitz. Since
the likelihood function is, in our case, independent of θ, i.e.,
gyt

θ = gyt , then it can be shown, by an induction argument,
that both ξt,θ and φt,θ are Lipschitz for every t.

Since the pdf ξt,θ is a Lipschitz function of θ, then

• it can be shown, again by induction, that µt(θ) ∝
µt−1(θ)

∫

gyt(xt)ξt,θ(xt)dxt is Lipschitz and

• it is possible to apply Theorem 2 in [4] to show that

∥(q, µN
t )− (q, µt)∥p ≤ ct(q)√

N
(9)

for any q ∈ B(S) and a constant ct(q) independent of N .

The inequality (9) establishes the consistency of Algorithm 2
and, together with the Lipschitz continuity of µt(θ), enables
us to apply Theorem 4.2 in [7] on the convergence of kernel
density estimators, that yields the inequalities (7) and (8). "

5. NUMERICAL RESULTS

We have run the two-scale Lorenz 96 model in (1), with
parameters J = 16, L = 160,

{

f, c, b, h,∆,σ2, σ̄2
}

=

{

8, 10, 15, 0.75, 2× 10−4,
1√
2
,
1√
8

}

,
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Fig. 1: (a)-(b) Estimates of µt,F(f) over the interval [2, 30]. (c)-(d) Estimates of µt,A(a) over the set [0, 0.2]2. All pdf estimates
have been computed using a Gaussian kernel φ. (e) Posterior-mean estimates of X1,t (axis in continuous time units).

prior distributions Zj ∼ U(0, 1) and Z̄l ∼
U(−1/2cb,+1/2cb), j = 1, ..., J and l = 1, ..., L, to gener-
ate synthetic observations of the form

Yt = [Z1,tno , . . . , ZJ,tno ]
⊤ + Vt,

where no = 250 (i.e., one observation vector is collected
every 250 discrete time steps) and Vt ∼ N (vt; 0, 4IJ).
The simulations are run for 10 continuous time units, which
amount to 5× 104 discrete time steps.

For Algorithm 2, the prior pdf’s on the state and the
parameter spaces are both uniform, namely, τ0(xt) =
∏J

j=1 U(0, 1) and µ0(f, a) = U(f−, f+)×U([a−, a+]2), with

f− = 2, f+ = 30, a− = 0 and a+ = 0.2. We have carried
out 20 independent simulations with N = 200 particles in the
outer filter and M = 600 particles in the inner filters used
to compute the importance weights of the outer filter. The
jittering kernel is Gaussian, with the form

κN (f, a) = N (f; 0, 20×N− 3
2 )×N (a; 0, 0.04×N− 3

2 I2).

The values of the parameters a in the ansatz
functions ℓ(Zj,t, a) cannot be known exactly. For
reference, we approximate them in each simula-
tion run using the least squares estimator âLS =

argmina∈R2

∑

j,n

(

ℓ(Zj,n−1, a)− hc

b

∑Lj−1
l=(j−1)L Z̄l,n−1

)2

where ℓ(Z, a) = Z(a1 + a2Z). This genie-aided estima-
tor is only used for numerical comparison, not for running
Algorithm 2.

Figures 1a and 1b display two sample estimates of the pdf
µt,F(f) for two independent simulations, with t = 200. These
are the best (a) and worst (b) outcomes of the 20 simulation
experiments (f = 8 is indicated with a vertical line).

Two sample realisations of the kernel estimates µ̂N
t,A(a)

are displayed in Figs. 1c and 1d. The LS estimate âLS is
indicated by a black cross in each case. It lies within the
highest density region in the example of Fig. 1d, and a bit
shifted in the example of Fig. 1c. Recall that a1 and a2 are
the parameters of a simple ansatz for the contribution of the
fast variables, so it is not surprising that the resulting pdf’s
are flatter than in the case of µ̂t,F(f).

Finally, Fig. 1e shows the posterior-mean estimates of the
first dynamic variable, X1,t = Z1,tno , in a single simulation

run. We observed how the actual value is closely tracked.
This is the case for the remaining dynamic variables, X2:J,t

(not shown). The mean square error of the dynamic variable
estimates over the 20 independent simulations (normalised
w.r.t. the power of the signals) was ≈ 0.0313.

6. CONCLUSIONS

We have proposed a nested PF scheme to jointly track the
dynamic variables and approximate the posterior pdf of the
fixed parameters in state space models. We have proved
a.s. convergence of the pdf approximations and displayed
numerical results for a stochastic two-scale Lorenz 96 system.
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