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ABSTRACT

Many existing methods for tracking heart rate (HR) from pho-

toplethysmographic (PPG) signals can be found in the litera-

ture, but they are tested only in static scenarios and fail when

motion artifacts are strong. Recently, an algorithm called

TROIKA was proposed for robust HR tracking, but the com-

putational complexity of that algorithm is very high which

makes it difficult to implement in small embedded devices,

such as wrist-wearable HR monitors. In this article we present

a new, fast family of methods robust against very strong mo-

tion artifacts using spectral subtraction or nonnegative matrix

factorization (NMF) for signal enhancement and MA removal

and online Viterbi decoding or particle filtering for HR track-

ing. On our test data set we obtain an average error of 1.3%.

Index Terms— heart rate, PPG, photoplethysmography,

particle filter, Viterbi algorithm, spectral subtraction, NMF

1. INTRODUCTION

Nowadays there is a range of products available for moni-

toring heart rate (HR), e.g., Samsung Gear Fit, Atlas Fitness

Tracker and Mio Alpha Heart Rate Sport Watch. These

devices estimate HR in real time from photoplethysmo-

graphic (PPG) signals recorded at wearer’s wrist using a light-

emitting diode (LED) that measures the intensity changes in

the light reflected by skin, forming a PPG signal [1]. The

device is worn on the wrist during normal daily activities,

but primarily during sport or other exercises. Heart rate

monitoring is crucial for exercisers to monitor their training

load and metabolism [2]. Unfortunately, PPG signals are

strongly influenced by motion artifacts (MA) resulting from

body (especially hand) movements, which strongly interfere

with HR monitoring during exercise. Many existing methods

for tracking heart rate from PPG can be found in the liter-

ature for clinical, static scenarios, but they fail when MA

are strong [3]. Zhang et al. proposed a robust HR tracking

method called TROIKA [3], but computational complexity

of that algorithm is very high (mostly due to the usage of

FOCUSS), which makes it difficult to implement in small

embedded devices such as wrist-wearable HR monitors. The

time factor define the device as real time or not, so it crucial

to develop a low-latency tracking algorithm.

In this work we propose a robust against very strong mo-

tion artifact noise and fast method for signal enhancement and

MA removal. We assume that we have access to accelero-

metric data, which can be used to enhance the PPG signal by

means of spectral subtraction or nonnegative matrix factoriza-

tion (NMF). We track the HR using online Viterbi decoding

or particle filtering.

2. SIGNAL ENHANCEMENT

In our signal enhancement methods we assume that the device

is equipped with accelerometers and that we receive 5 chan-

nels: 2 PPG signals, measured in different places and 3 sig-

nals from the acceleration sensor which show the accelera-

tion for the x, y and z axes, which is the structure of data

collected in [3]. The MA distortions in the PPG signals have

the same frequencies as the changes in the accelerometer sig-

nal and in [3] Zhang et al. have shown that the singular

spectrum analysis (SSA) with further removal of components

with peaks at similar frequencies as those in the accelerome-

ter spectrum was a very successful method for MA filtering.

Here, we propose to use the faster NMF and a much simpler

spectral subtraction.

All signals are divided into frames xk
i,t, where k =

1 . . .K, i = 1 . . .M , t = 1 . . . L indexes the time, K = 5 is

the number of channels and M = 1000 is the number of sam-

ples per frame, which correspond to 8 seconds of recording

with 125 Hz sampling rate, with 750-sample overlap, which

means that the results are computed every 2 seconds for the

last 8 seconds of the recording, as in [3].
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2.1. Non-negative Matrix Factorization

Reduction of the influence of MA and other noise on the PPG

signal can be obtained using non-negative matrix factoriza-

tion (NMF). This approach decomposes a nonnegative (hav-

ing only nonnegative elements) magnitude or power spectro-

gram matrix Y into a product of two, also nonnegative, matri-

ces A and S.

Y ≈ AS (1)

In the decomposition step, a distortion measure between

the data Y and its approximation AS is minimized. The origi-

nal NMF algorithm was designed to minimize Euclidean dis-

tance or I-divergence. Non-negative Matrix Factorization ap-

proximates each column of the data matrix yt as a linear com-

bination of basis vectors an (columns of A):

yt =
∑

n

sn,tan (2)

where n is the basis vector number and t is the time index.

The matrices A and S are nonnegative. Only additive mix-

tures of nonnegative basis vectors are possible. The coeffi-

cient matrix S is called the weighting matrix.

Let us denote the FFT of the k-th channel (k ∈ [1, 5]) as

yk. Magnitude spectrogram Y is created and each column of

spectrogram is normalized:

yk =
yk

max(yk)
. (3)

Magnitude spectrogram Y consists of concatenated spectro-

grams of all 5 channels: Y =
[

Y1 Y2 Y3 Y4 Y5
]

. A is

initialized with random variables. Y is factorized by NMF

with r ∈ (0.1, 2.5) and a weight sparsity regularization with

µ = 0.1 and p = 1.5 [4]. The resulting weights S are split

back into five submatrices which correspond to the five chan-

nels: S =
[

S1S2S3S4S5
]

. For each of the matrices, its

L2-norm is computed and s is modified with weights on each

channel:

if ||s1||2 > ||s2||2
sout = w2s

1 + w1s
2 − w3s

3 − w4s
4 − w5s

5

wi =
||si||2

||si||2 + ||sj ||2
, where j, i ∈ {1, 2}

wk =
||w2s

1 + w1s
2||2

||3sk||2
, where k ∈ {3, 4, 5}

if ||s1||2 < ||s2|2
sout = w1s

1 + w2s
2 − w3s

3 − w4s
4 − w5s

5

wi =
||si||2

||si||2 + ||sj ||2
, where j, i ∈ {1, 2}

wk =
||w1s

1 + w2s
2||

||3sk||
, where k ∈ {3, 4, 5}

else

sout = mean(s1, s2)− w(max(s3, s4, s5))

w = 0.55.

The last step consists of reconstruction of the spectrogram Y

by the product of A and Sout.

Yrec = ASout (4)

We use an online version of NMF, where the basis A is

found beforehand and the yrec is found on a frame-by-frame

basis.

2.2. Spectral Subtraction

Spectral subtraction is a common method for signal enhance-

ment [9]. We have found that the best scaling factor between

the spectra is the sum of the samples of the spectrum. The

enhanced signal can therefore be calculated as:

y = R
( yppg
∑

yppg

−
yacc

∑

yacc

)

, (5)

where yacc = yaccx
+ yaccy

+ yaccz
, yaccx

, yaccy
, yaccz

are the amplitude spectra of the corresponding x, y and z ac-

celerometer channels, yppg is the amplitude spectrum of the

PPG signal and R(x) is the ramp function defined as

R(x) =

{

x, if x > 0
0, if x ≤ 0

(6)

In Fig. 1, an example spectrograph is shown of the PPG

signal before and after spectral subtraction [5]. As one can

notice, the motion artifacts have been removed. It is also clear

to notice that there is a visible HR trajectory and its first har-

monic. In order to even further enhance the heart rate signal,

we use the presence of its first and second harmonics by ap-

plying the following modification of the spectrum:

yk = a1yn + a2y2n + a3y3n, (7)

where yk is the k-th element of the y vector. For this report

we have used a1 = 1, a2 = 0.66 and a3 = 0.33, which had

been chosen experimentally.

Having two PPG signal channels we have had to deter-

mine which one to use. To determine it, we analyze the vari-

ance of their spectra. The spectrum with lower variance is

chosen for further analysis.

The final step for preparing the signal before using the

heart beat tracking algorithms, was to multiply the spectrum

with a probability density function determined by the his-

togram of the training BPM values. The skewed normal dis-

tribution with mean value of 130 BPM, standard deviation of

30 BPM and skewness of 0.6 has been chosen as a parametric

approximation of the histogram.
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Fig. 1. Example of spectral subtraction on a PPG signal: raw

PPG spectrogram with real HR shown as a red line (top) and

PPG spectrogram enhanced using spectral subtraction (bot-

tom). The strongest harmonics are not fully attenuated, but

the resulting signal is very clean.

3. HEART BEAT TRACKING

3.1. Particle filtering

We use the original particle filter called sequential importance

resampling (SIR) that has been presented in [6]. In our case,

the particles represent the estimated heart rate values. The

algorithm consists of the following steps:

1. generate N random particles x
(L)
0 and assign the weight

of each as w
(L)
0 = 1

N
,

2. estimate the next state of each particle based on the state

model,

3. add random noise (here: Gaussian with variance v) to

each particle,

4. to each of the particles, update its weight w
(L)
k based on

the distribution p(x
(L)
k |yk), L ∈ (1 : N),

5. if the effective number of particles Neff is less than the

desired threshold, Nthr perform resampling,

6. new signal state estimate can be computed as a weighted

mean of the particle states

7. if not done, go to 2.

We have performed simulations for N = 5000, although

in general increasing the number of particles should give bet-

ter results. We have modeled the HR signal with the autore-

gressive (AR) model. The parameters of the model have been

determined for the training data set using the Neadler-Mead

minimization of the mean square prediction error. The model

order was set to q = 8.

The variance v of the additive system noise is dynami-

cally determined on the basis of the noise in the filtered PPG

spectrum. The more noise is in the channel, the less we trust

the measurement, the more we trust the autoregressive model.

Tests have shown that the best quantitative measure of the

noise in a channel for heart rate analysis is the Lp norm of the

spectrum samples divided by the first few frames spectrum Lp

norm average:

S =

f=∞
∑

f=0

y(f)p (8)

v = R
(v0 − aS

Savg

)

, (9)

where S is the Lp norm of the filtered PPG spectrum samples,

Savg is the average of first few frames spectrum Lp norm,

R(x) is the ramp function (6), v0 is the maximum variance,

and a is a parameter that binds the S value with the variance.

Our experiments have shown that parameters p = 0.6, v0 =
4.7 and a = 1.6 give the best results.

The p(x
(L)
k |yk) probability density funcion is approxi-

mated with the filtered, normalized PPG spectrum of one of

the PPG channels.

The assigning process of probability weight w
(L)
k for par-

ticle L in step k can be defined as:

ŵ
(L)
k = w

(L)
k−1p(x

(L)
k |yk) (10)

w
(L)
k =

ŵ
(L)
k

∑N

J=1 ŵ
(J)
k

(11)

Having the weights, we can estimate the number of effective

particles Neff as:

N̂eff =
1

∑N

L=1

(

w
(L)
k

)2 (12)

If N̂eff is less than a given threshold Nthr a sequential impor-

tance resampling has to be done:

1. draw a new set of N particles from the current particle set

with probabilities equal to their weights.

2. set w
(L)
k = 1

N
for L ∈ (1 : N)

We have chosen Nthr = 1000.

The estimated value of the observed signal for step k can

be computed as:

x̂(k) =

N
∑

L=1

w
(L)
k x

(L)
k (13)

The major advantage of this method is that thanks to

the broad range of search it is very likely to find the right
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No. Essvit Enmfvit Esspf Enmfpf ETROIKA

1 3.60 8.08 3.11 5.10 1.90

2 1.85 1.72 1.45 2.31 1.87

3 0.80 1.07 0.55 2.51 1.66

4 1.40 1.57 1.64 2.42 1.82

5 0.76 1.09 0.63 2.57 1.49

6 1.18 1.55 0.92 2.59 2.25

7 1.20 1.40 1.30 2.30 1.26

8 0.57 0.95 1.57 1.60 1.62

9 0.54 1.04 0.64 1.70 1.59

10 14.25 10.04 3.60 5.58 2.93

11 0.80 2.89 0.54 2.49 1.15

12 0.85 1.29 0.76 1.71 1.99

mean 2.32 2.72 1.30 2.74 1.79

Table 1. Average absolute percentage error for individual ex-

periments. Essvit for SS + Viterbi, Enmfvit for NMF + Viterbi,

Esspf for SS + PF, Enmfpf for NMF + PF and ETROIKA

(SSA+FOCUSS+Vrf) for the reference TROIKA from [3].

peak again after it has been lost. The PPG channel selec-

tion method is a big advantage. Even though in most of the

recordings the first channel was the better one, it was not a

rule.

3.2. Viterbi decoding

The second method of peak tracking is an online version of

the Viterbi algorithm [7]. The aim of the method is to ob-

tain the most probable sequence of HR values given the entire

PPG signal recorded up to now. We define the cumulative

weight as

pt+1 = p(yt+1|xt+1 = i)p(xt+1 = j|xt = i) (14)

where xt+1 is the estimated new HR value, xt is an HR value

in the previous frame and yt+1 is a spectrum observation for

frame t+ 1. Consequently, p(xt+1 = j|xt = i) is the proba-

bility of reaching xt+1 = j if the last chosen value is xt = i

represented by the the transition matrix A, which contains

probabilities of transition from state i to state j. It’s elements

are given by

ai,j = N (|i− j|, µ, σ), (15)

where N is the normal probability distribution with mean

µ = 0 and standard deviation σ = 20. p(yt+1|xt+1) is ap-

proximated as

p(yt+1|xt+1) =
xt,f

∑

f xt,f

. (16)

Furthermore, sinit is the initial probability vector which is

used to find the initial value of the pulse. The prior probability

for every pulse value is a normal distribution, with mean value

µ = 93.37 which is an average value for the first ground-

truth HR values taken from the reference data and standard

deviation σ arbitrary set to 20.

It eliminates potential errors caused by low- and high-

frequency noises and protect the computed pulse track from

unnatural changes. et is emission vector built by equation:

et = log
( yt
∑n

i=1 yt(i)

)

(17)

where yt is symbols vector for the t-th data frame.

For every HR value which is possible to be chosen by

described algorithm the probability is determined. The values

are collected in the following matrix:

P =











p11 p12 · · · p1m
p21 p22 · · · p2m

...
...

. . .
...

pn1 pn2 · · · pnm,











where t = 1, 2, ..., T indexes data frames, i = 1, 2, ...,M
indexes the potential HR values. Every value in this matrix is

computed by following equation:

pi,t =

{

sinit + et, if t = 1
max(pt−1 + ai + ei,t), if t > 1

(18)

where pt−1 is vector of probability values for t−1 frame and

ai is the i−th column of the A matrix.

Viterbi algorithm finds the best HR path through the set of

all possible model states for every element of the observation

sequence [8]. The last value of the path is the new pulse value

in consecutive sequence, as follows

x̂(t) = arg max(pt) (19)

4. RESULTS

Data used for tests was the data from the 2015 Signal Pro-

cessing Cup, which was also used in [3]. We have used data

from 12 experiments involving human subjects during exer-

cise. Subjects were aged 18–35 and performed running exer-

cises. During data recording, each person ran on a treadmill

with changing speeds. The first and second type of exercises

consists of following stages:

1. rest (30s) – 8 km/h (1min) – 15 km/h (1min) – 8 km/h

(1min) – 15 km/h (1min) – rest (30s),

2. rest (30s) – 6 km/h (1min) – 12 km/h (1min) – 6 km/h

(1min) – 12 km/h (1min) – rest (30s).

In the experiments only the first data is used the first type

of exercises. Rest of the data was based on the second type

of exercises. We have tested all four combinations of signal
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Fig. 2. Example results.

enhancement and peak tracking. Tracking error is defined as

the average absolute error:

E =
1

W

W
∑

t=1

|x̂(t)− x(t)|

x(t)
, (20)

where W is the number of frames, x̂(t) is the estimated heart

rate and the x(t) is the true heart rate value at time t. The ob-

tained error values, along with the results from [3], are shown

in Tab. 1. Fig. 2 presents example results for 3 experiments

for all four combinations. The Viterbi decoder was prone to

sudden changes in the estimated HR, but these could be re-

moved with an additional smoothing filter as post-processing.

5. CONCLUSION

In this work we have proposed framework for heart rate es-

timation with a pulse oximeter and an accelerometer, which

are assumingly embedded in a wristband. The approach have

been tested and the results have been presented in section 4.

More work and tests are required to determine the best param-

eter set. The best results were obtained using a combination

of spectral subtraction and particle filtering. The simplicity of

the spectral subtraction makes the algorithm very fast when it

comes to computational complexity. Furthermore, the com-

putational load also depends on the number of particles in the

particle filter, which acts as a parameter controlling the trade-

off between the speed and precision. In our experiments (a

prototype GNU R implementation), the particle filtering with

spectral subtraction analyzes a single frame in 0.2 s on aver-

age on a single core of an Intel Core i5 processor. There is a

considerable difference in execution time of each method. For

NMF+TROIKA the average execution time for one recording

was about 25–35 minutes, while for NMF with particle fil-

ter about 10-15 minutes. We have found that this is a few

orders of magnitude faster than the FOCUSS algorithm used

in the original [3]. Using Spectral Substraction with Viterbi

decoding method made the most satisfactory time results and

the execution time for this method was several seconds per

recording.
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