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ABSTRACT

In this paper, we propose a novel key agreement scheme
called ECG Linear Prediction key Agreement (ELPA) with
the properties of plug-n-play and transparency to secure
inter-sensor communication in Wireless Body Area Networks
(WBANS). ELPA is a new physiological based key agreement
scheme allowing two nodes belonging to the same WBAN
to agree on a symmetric key from ECG signal features. The
paper introduces the use of Linear Prediction Coding (LPC),
which has always been used for a compression purpose, in
hiding the cryptographic key. In fact we prove that concealing
the symmetric key using this tool ensures high security level
while keeping low computational complexity and communi-
cation overhead compared with the state of the art.

Index Terms— WBAN, communication security, ECG
features, LPC, communication overhead

1. INTRODUCTION

WBAN, a promising new research area, is defined as a net-
work consisting of intelligent, low-power, micro technology
sensors and actuators which can be placed on the body, pro-
viding timely data [1]. The WBAN nodes are interconnected
and connected to a coordinator node via a wireless communi-
cation technology like Bluetooth and Zigbee [1]. Considered
as a mistrusted channel, and while WBAN deals with sensi-
tive medical data, securing the inter-sensor communications
remains a major issue. Communication is encrypted with a
shared symmetric key thats why a secure management and
agreement of this shared symmetric key must be performed.
Usual methods to secure inter-sensor communications have
been based on symmetric key distribution or predeployment
mechanisms. However the former requires secure key distri-
bution scheme and the latter requires a set up and rekeying for
every node management, whereas nodes in WBAN must be
removed, added and tuned in a secure and transparent manner
: without the user participation. The recent proposed solution,
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to deal with key management problem, is physiological based
security. The main idea of physiological based key agreement
is to allow nodes belonging to the same WBAN to agree on a
symmetric cryptographic key from the common physiological
features. The collected features at different parts of the body
are enough similar for an authentication purpose but not ex-
actly identical to generate the same key sequence. This is due
to noise caused by analog to digital converter and muscles
contractions. The already used technique to overcome this
problem is the fuzzy vault scheme [2]. The major weakness of
this method is the size of the vault, a random set constructed
to conceal the features, which is closely correlated to commu-
nication overhead, primary cause of energy consumption. In
this paper we investigate the use of linear prediction coding
(LPC) to achieve feature set locking minimizing greatly the
communication overhead. ELPA does not require any hiding
of the features in a vault set which reduces greatly the mes-
sage size. The proposed algorithm uses the already developed
feature extraction stage AC/DCT [3]. ELPA is first assessed
in the MIT-BIH Normal Sinus Rhythm Database [4] contain-
ing recordings of healthy subjects and second in the MIT-BIH
Arrhythmia Database [4]containing records affected by heart
diseases to evaluate the robustness of the proposed method.
The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of the usual methods of secur-
ing inter-sensor communication and the existing works in the
new promising area: biological key. In section 3 we present
the whole proposed scheme and detail each system bloc. Fi-
nally we estimate the performance of the proposed system
compared with the most known one the PSKA [5] in term of
overhead and security.

2. RELATED WORK

All the security requirements for communications can be ful-
filled if a key is successfully and securely distributed. Usually
used, predeployed keying mechanism was always the primary
solution to secure communication in a Wireless sensor Net-
work. It consists of distributing initial keys to all the partic-
ipating sensors in the set-up phase [6]. The trend has then
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been moved to symmetric keying agreements; most known
are SPINS [7]. Even if the aforementioned techniques are at-
tractive due to their energy efficiency, limitations have been
exhibited in the used key sharing protocol. Later many stud-
ies explored the alternative of using a public-key infrastruc-
ture for key distribution. But public key distribution cannot
be recommended for WBAN because of their high computa-
tional complexity and low power efficiency. The recent trend
for secure key management is the use of biometric sensed sig-
nal, not available to all other kinds of wireless networks, to
generate the symmetric cryptographic key. As nodes belong-
ing to the same WBAN have the advantage of measuring the
same signal, key can be extracted and shared in a transpar-
ent manner. The use of biometric key was first introduced
by [8]. The author describes the biometric measurement, ran-
domness of biometric signals and the use of error correcting
codes as the measurement of biometrics is never perfect. [9]
propose to use the heart inter-pulse interval IPI which can
be extracted from multiple sensors such as electrocardiogram
ECG, photoplethysmogram PPG, heart sounds, blood pres-
sure waves. IPI cannot satisfy the distinctiveness criteria and
has to be collected in a synchronous way [9]. [10] describes
the idea of, rather than using the ECG or PPG signal as a
cryptographic key, using it to hide a random generated key.
The idea was fully described and implemented in [5]. The
agreement process is explained hereafter. On the transmit-
ter side: (1)generating a polynomial by a random choice of
its coefficients,these coefficients construct the random key to
hide;(2) generating a feature vector obtained from the physi-
ological signal;(3) locking the features by projecting them on
the chosen polynomial;(4) adding random points to construct
the vault;(5) sending the vault. An intruder MITM, intercept-
ing the vault, cannot distinguish the random values from the
legitimate ones. Adding chaff points is known by fuzzy vault
scheme and was first presented by [2].On the other side the
receiver generates its own version of the feature vector, since
it can access the same physiological signal, it starts to un-
lock the vault by extracting the common features. It can sub-
sequently reconstruct the polynomial coefficients so the key.
However it is proven that security strength of PSKA heavily
depends upon the vault size [5], a major issue closely cor-
related with the communication overhead primary cause of
energy consumption. Hu et al. [10] prefers later not to use the
polynomial locking. Based only on sending features on an or-
dered way, the sender can check up the compliance of the rel-
evant common set and send an acknowledgement to receiver.
Based also on concealing the features in a large random set,
OPFKA shows also its weakness in communication overhead.

3. ECG LINEAR PREDICTION KEY AGREEMENT

The purpose of our conceived algorithm ELPA is to perform a
secure and transparent node pairing by generating a symmet-
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ric key based on the ECG captured signal. We assume that
every node, including the coordinator node, has the ability to
measure the ECG signal. The main contribution of ELPA sys-
tem is the use of LPC [11] as a technique to hide the shared
symmetric key also called session key. This is meant to re-
place the adding of chaff points to reduce the communication
overhead. If a transmitter node N7 requests to establish a
connection with a receiver node Ng, which can be a coor-
dinator one, Ny has to verify that N7 can generate the same
session key without sending it. This proves that the two nodes
belong to the same BAN. The key sharing process works as
detailed in Figure 1: the transmitter begins by measuring an
ECG sequence for a fixed time 7. The vector X containing N
samples is then calculated. The features F}, a representative
set of the captured ECG, are so extracted. F} is the principle
data to construct the session key. F; will be linearly predicted
to produce two main parameters: A, the LPC coefficients vec-
tor and E the residual error of predicting F3. A will be sent to
the receiver and E will be transformed by the key generation
process to generate a unique 128 bits session key.
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Fig. 1. ECG linear prediction-based key agreement.

By sending only the A vector the secret session key is hid-
den and protected from eavesdroppers and intruders attacks.
To adjust and correct the few fault bits we choose to protect
the generated key K; by the mean of BCH coding. The BCH
suffix is then sent to the receiver and added to the receiver
key version K5.0On the receiver side and in synchronous man-
ner, ECG is captured and feature extraction is performed. The
key decoding stage reconstructs the 128 bits session key. In
fact having its own feature version and helped by the LPC co-
efficients generated on the transmitter side, the receiver can
reconstruct his own version of the symmetric key. We ad-
dress by our proposed method the communication overhead
issue which is caused essentially by adding the chaff points,
random feature vectors. We show that in this case overhead is
limited.

3.1. Feature Extraction

Feature extraction is extracting the relevant data from the
captured signal capable of identifying nodes belonging to the
same WBAN system. Authors in [3] prove that AC/DCT
technique is a promoting solution. It is proven that auto-
correlation coefficients embed similarity features among
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records of the same subject. Algorithm]1 explains the method

Algorithm 1 Feature Extraction

1: The sender and receiver collect ECG signal for Ts

2: Signal filtering

3: Compute AC =
cients

4: Compute DCT =
of the AC vector.

5: Truncate DCT to F; the first K elements of DCT vector
with q = 1 if transmitter and q = 2 if receiver

[AC.,,ACL, 1, L auto-correlation coeffi-

[DCTy,,DCTy, 1 DCT transformation

involving 4 main stages: signal acquisition, signal prepro-
cessing, AC calculation and finally DCT calculation. The
signal is first captured on the transmitter and receiver side
(two different ECG leads) in a synchronous manner for the
same period Ts. T is chosen so that multiple pulses are
included in the windowed signal. The signal is then filtered
for noise reduction using a median filter. The auto-correlation
coefficients are calculated (1):
N—|m|-1

Rofm]= >

=0

x[i]z]i +m] (D)

Where z[i] is the windowed ECG, z[i + m] is the time-
shifted version of the windowed ECG with a time lag of
m=0,1,..,L—1,L << N. A frequency domain transfor-
mation is then performed via discrete cosine transform. The
DCT vector is estimated as (2) :

= 7rcas (2¢ —|— Du

ylil——v— ©))
=0

For the AC/DCT method y[i] is the auto correlated ECG
obtained from (1). GJu] is calculated from the equation cited
in [3]. This stage reduces greatly the auto-correlation dimen-
sionality. In fact only K << L non zero DCT coefficients
will contain significant information. This is illustrated by Fig-

ure 2.
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3.2. Linear Prediction Coding

The core of the proposed scheme is linear prediction. Mostly
used in audio signal and speech processing, linear prediction
tries to find parameters of a linear model that could reproduce
the most faithfully the original signal [11]. The basic block
is a FIR filter of appropriate order p. In the present case, the
DCT coefficients of the AC ECG signal are linearly predicted.
As explained in Figure 1 the F} vector is predicted to gener-
ate two main components I and A where FE is the error of
prediction also called the excitation and A the coefficients of
the prediction filter. The prediction error E is calculated as
described in (3):

en =e(n) =y(n yin—1) (3
=0

Where §j(n) is the predicted signal and a(i) are the co-
efficients of the prediction where a(0)= 1 and p the predic-
tion order. To recover the signal the two components: LPC
coefficients and excitation signal are mandatory. One of the
important decisions that usually have to be made in the linear
prediction is the determination of the optimal order of predic-
tion [11].

In this paper and for most ECG signals we found that an
order higher than 4 show no significant improvement in mod-
eling quality. The vector A is sent to the receiver and resid-
ual prediction error E is transformed to construct the 128 bits
symmetric key.

3.3. Key generation

The purpose of this stage is to transform the resulting predic-
tion error composed of K elements to a 128 bits vector and
to protect the generated key with a BCH coding. It is evident
that most residual error signals swing around zero. So we
choose to adopt a pulse-code train transformation. A pulse-
code train is defined as positive values are coded as +1 and
negative ones as zero.

Algorithm 2 Key Generation
1: for each element of E =
2. ife; > 0 then

4 else

5 I; <0

6:  end if

7

8

9

[e1,.ex ] do

: end for
: Start BCH encoding
: for each k elements of Ky =[[1,, [k] do
10: BCH encode
11:  Save the n- k last elements BCH code in Ck,
12: end for
13: Concatenate Ckq,..,Ckp to construct Ck

DCT coefficients

Fig. 2. Dimensionality reduction and feature extraction.
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As the proposed algorithm is based only on the compar-
ison of the 128 bits keys K7, K> and as a single bit error



23rd European Signal Processing Conference (EUSIPCO)

is enough to reject legitimate nodes, its recommended to in-
clude an error correcting code. Several codes are used in the
literature and their choice is a compromise between complex-
ity and robustness. In the actual use case a BCH coding is
sufficient to perform error correction with variable corrective
power. For each k codeword an n-k suffix is calculated in the
encoding phase. The n-k suffixes will be than concatenated to
construct Ck vector. Ck is then sent to the receiver to adjust
the eventual errors in the generated key. Figure 3 shows the
data stream to be sent after key generation and BCH coding.
ID, and I DR are the sender and receiver identifiers and No

IDs IDr Ck,...Cke a(l),....a(p) No

~ J\.
Identifier

B(Msufﬁxes LPC coefficients Nonce

Fig. 3. Data stream after key generation and BCH coding.

is a nonce, random generated number to guarantee freshness
of the sent message.

3.4. Key decoding

The receiver node Ny starts by extracting his own version of
the features F5 from the sensed ECG. It can then reconstruct
the prediction error. The excitation signal is a subtraction of
the original signal and the predicted one as explained in (1).
The original signal is the vector F5 slightly different from the
original one Fj and the predicted one is as explained in (3),
where a(i) are the received coefficients A and y is receiver
version of the features. Algorithm 3 explains key decoding
procedure in details. Key generation is followed by BCH (n,k)
decoding to adjust the eventual errors in the calculated key.

Algorithm 3 Key decoding

1: The receiver receives the message:[/ D, D,.,Ck,A]

2: Compute E= [é1,,€ k] the prediction error result of LPC

synthesis of the extracted F5 and the received A.

3. for each element of E = [¢1,,6x] do
4 if ¢; > 0 then
5 I i — +1
6: else
) 5
8
9

I, <0
: endif
: end for
10: for each k elements of [ = [fl,, fK] do
11:  Concatenate [ p and C'k,, to form Ny, the noisy mes-
sage
122 BCH decode of Ny, to reform the original I,
13: end for
14: Reconstruct Ky = Ip,,p=1..K/k
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4. PERFORMANCE EVALUATION

This section is dedicated to evaluate the proposed algorithm
ELPA by addressing three main characteristics: 1) Security;
2) Computational complexity; 3) Communication overhead.
The test bed ECG signals are obtained from the Physionet
database. We will assess the generated key by performing
a series of experiments on two sets of databases: the MIT-
BIH Normal sinus Rhythm Database [4] containing 36 ECG
recordings sampled at 128 Hz, two ECG lead records for each
subject and the MIT-BIH Arrhythmia Database [4] contain-
ing 48 from different subjects sampled at 360Hz, each record
consists of two ECG leads.

4.1. Security

The linear prediction locking make it very difficult to adver-
saries to know the key agreed upon. Only nodes which have
the capabilities of measuring the same ECG signal can unlock
the established symmetric key. Thanks to temporal variation
of the collected data, the system is protected from replay at-
tacks. If an intruder tries to capture and replay the exchanged
message containing essentially the LPC parameters, it will be
discarded by any receiver due to the difference in the captured
ECG signal, so in the predicted parameters. Our proposed
system is also protected from MITM attacks. As the system
is based on linear prediction, having only the LPC parameters
cannot allow to recover the signal. The eavesdroppers must
have the original signal to synthesize the prediction error.

4.2. Computational complexity

The main contribution of the ELPA algorithm is the out-
standing reduction of the computational complexity and com-
munication overhead compared with the previous proposed
solutions as PSKA [2]. PSKA is based on the locking of
conventional key using a mathematical tool: polynomial root
finding. The performance of the system is optimized when
using higher orders of the polynomial which means a higher
computational cost. In the proposed PSKA algorithm poly-
nomial order can reach 12. On the other side, locking the
session key in the ELPA algorithm consists only on a linear
prediction. LPC parameters are simply determined by mini-
mizing the mean square value of the residual error. It leads to
solve linear equations by using LevinsonDurbins algorithm.
As the used prediction order is 4, we can prove easily that
solving four linear equations is much less complex than La-
grangian interpolation algorithm for decoding polynomials
from their projections.

4.3. Communication overhead

The security strength of PSKA completely depends on the
vault size. Firstly this can cause collision between features
which leads to false positives. Secondly a chaff point takes in
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PSKA 36 bits and a vault size for stronger security can reach
5000. OPFKA, proposed later, enhances the PSKA algorithm
however the results in terms of memory storage and com-
munication overhead are still unsatisfying as the algorithm
in [10] is based also on concealing features in a vault set. The
main contribution of the proposed scheme is that it can re-
place the hiding of the features with chaff points by using
linear prediction coding as locking method. The sender has
only to send the LPC generated parameters. Using 2 bytes to
code the a(z) coefficients seems to be adequate in the present
case. If we choose a prediction order equal to four, vector A
takes only 8 bytes. Adding the BCH suffixes consumes only
(n-k) * K/k bits. For example for a BCH (64 , 36) for a key
length of 144 only 14 bytes are added.

This is to be compared with the communication overload
of the PSKA or the OPFKA algorithms, that reach rates in
Kbytes of communication overhead [10]. Results in terms of
False Acceptance Rate FAR and False Rejection Rate FRR
still promoting compared with the PSKA ones. PSKA reach
an optimum FAR and FRR of 0.2 for a polynomial order equal
to 14. Figure 4 shows the results of experiments done on two
sets of database. The Normal Sinus Rhythm Database con-
taining records from 18 subjects. The developed algorithm
can reach an FAR and FRR equal to 0.2 for an added BCH
bits not exceeding 20 Bytes. We have also tested the perfor-
mance of our system on the arrhythmia database containing
48 records of subjects having heart disease. This second step
of assessment is mandatory as the aim of our algorithm is to
be implemented in health monitoring system worn mostly by
unhealthy subjects. Figure 4 illustrates the robustness of the
proposed system ELPA to arrhythmia problems.

Compared with the previous solutions, the ELPA algo-
rithm ensures a higher level of security at a lower compu-
tational complexity and communication overhead while con-
serving the same FAR and FRR rates.

5. CONCLUSION
In this paper we present a secure and lightweight key agree-

ment scheme called ELPA. ELPA allows two nodes, including
the coordinator node, to agree upon a symmetric key based
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on the similarity in the measured ECG signal at different
leads. The major contribution of the conceived algorithm is
the use of LP Coding to hide the common features. We have
proved by assessing the algorithm in two different databases
that ELPA is minimizing greatly the energy consumption by
reducing the communication overhead. We have also proved
that the proposed method keeps a high security level by re-
sisting MITM and replay attacks.
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