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ABSTRACT

Although the field of Brain-Computer Interfacing (BCI) has
made incredible advances in the last decade, current BCIs are
still scarcely used outside laboratories. One reason is the lack
of robustness to noise, artifacts and nonstationarity which are
intrinsic parts of the recorded brain signal. Furthermore out-
of-lab environments imply the presence of external variables
that are largely beyond the control of the user, but can severely
corrupt signal quality. This paper presents a new generation of
robust EEG signal processing approaches based on the infor-
mation geometric notion of divergence. We show that these
divergence-based methods can be used for robust spatial fil-
tering and thus increase the systems’ reliability when con-
fronted to, e.g., environmental noise, users’ motions or elec-
trode artifacts. Furthermore we extend the divergence-based
framework to heavy-tail distributions and investigate the ad-
vantages of a joint optimization for robustness and stationar-
ity.

Index Terms— Brain-Computer Interfacing, Common
Spatial Patterns, Nonstationarity, Robustness

1. INTRODUCTION

Since the advent of the technology, Brain-Computer Interfac-
ing (BCI) [1] aims to reliably translate recorded brain signals,
e.g., EEG, into control commands for a computer. Despite im-
provements over the last decades, current BCIs are still mostly
used inside laboratories. One major limitation preventing the
prevalence of this promising technology into everyday life of,
e.g., patients, is the lack of robustness and reliability. How-
ever, tackling noise, artifacts and nonstationarity still poses a
large challenge in practice.

∗This work was supported by the by the Federal Ministry of Education
and Research (BMBF) under the project Adaptive BCI (FKZ 01GQ1115) and
by the Brain Korea 21 Plus Program through the National Research Founda-
tion of Korea funded by the Ministry of Education.

In this work we mainly focus on motor-imaginary BCIs
[1]. Motor imagery, i.e., the imagination of hands, feet or
tongue movements, is a popular paradigm to voluntarily in-
duce a set of mental states which can be distinguished by
a computer. Neurophysiologically, motor imagery tasks al-
ter the sensorimotor rhythms (SMRs) over specific spatial lo-
cations in the sensorimotor cortex. Recognizing the exact
spatial localitions of SMR modulations is extremely impor-
tant for reliable BCI communication. A popular method for
this task is Common Spatial Patterns (CSP) (e.g., [2] [3]).
Mathematically, CSP solves a generalized eigenvalue prob-
lem which can be computed efficiently. Since the original ver-
sion of CSP is sensitive to artifacts and nonstationarity, more
robust CSP variants have been proposed, e.g., [4] [5] [6] [7]
[8] [9] among others. Recently, a generic divergence-based
spatial filtering framework [10] has been developed contain-
ing many of these CSP variants as special case. Following this
line of research the current work discusses and evaluates the
use of divergence-based methods as generic signal processing
tools for BCI.

2. NOISE, ARTIFACTS & NONSTATIONARITY

2.1. The Challenge of EEG Analysis

The human brain is a dynamical system with many neuronal
processes (e.g., controlling body functions, processing exter-
nal input, responsible for cognition) running in parallel at
each moment. Motor imagery affects only a tiny fraction of
the neuronal activity, but changes in each of these processes
may alter the overall EEG signal. Due to the presence of large
amounts of task-unrelated activity, EEG signals are intrinsi-
cally noisy and nonstationary which makes BCI communica-
tion be a challenging task.

Noise sources can be internal (i.e., mental states) or ex-
ternal, and they introduce nonstationarities by either altering
brain activity directly or affecting the sensors (i.e., electrodes)
that are used to register brain activity. Internal factors such as
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fatigue, changes in attention, task involvement or the strategy
to perform motor imagery are reflected in the recorded signal
and may largely affect the features used for classification. In
addition, external factors such as changes in impedance (e.g.,
electrode gel dries out), sensory input, experimental condi-
tions etc. may also contribute to a large part to the observed
nonstationarity. In out-of-lab environments the number of ex-
ternal sources distracting the subject are much larger, e.g., the
user is constantly faced with stimuli that are not relevant to the
task he is involved in, such as radio or TV, traffic noise, and
background conversations. Even though not task-relevant, the
sensory input is processed by the brain and it may affect men-
tal states, e.g., by distracting attention from the task at hand.
Note that changes can have various time scales.

Artifacts due to small-scale (e.g., eye blinks) and large-
scale movements (e.g., talking, walking, moving a wheelchair)
are also common in natural environments. However, not only
do muscles themselves produce electromagnetic fields that
project into EEG sensors, the movement preparation itself
induces changes in brain activity and bulk movements may
involve mechanical artifacts (e.g., movement of the elec-
trodes). Home environments usually contain a large number
of electronic devices such as kitchen appliances, TV, and
computer, each producing their own electromagnetic field.
This may pose an additional challenge to machine learning.

2.2. Impact on Performance

BCI performance usually suffers when the recorded EEG sig-
nal is very noisy, affected by artifacts or highly nonstationary.
Figure 1 depicts the impact on performance. The left panel
shows gray lines representing the amplitude envelope of sin-
gle motor imagery trials. One can see that the decrease in
power (i.e., ERD effect) can be hardly detected in single tri-
als due to the large amount of noise. By averaging (but also
by spatial filtering) one significantly increases the signal-to-
noise ratio, so that the power decrease becomes evident (black
solid line).

The middle panel shows the adverse effect of artifacts on
BCI training. Here the spatial filter computation is affected by
an artifact. Since the standard method for computing spatial
filters, CSP, maximizes the variance ratio between two motor
imagery classes in a naive data-driven manner, it is vulnerable
to artifacts and overfitting if high power artifacts (e.g., loose
electrodes, eye blinks) affect both classes in a slightly differ-
ent manner. Sometimes single artifactual trials may even lead
to degenerated CSP patterns as shown in the figure. Possible
remedies are data cleaning or the use of robust algorithms.

The right panel depicts feature nonstationarity, i.e., a time
dependency of the feature distribution [4]. As mentioned
above EEG signals are intrinsically nonstationary because
different processes are active in the brain at different times
and the sensory input also changes constantly. This nonsta-
tionarity may adversely affect performance as most standard

Fig. 1: Left: Gray lines represent amplitude envelopes of sin-
gle trials; the black solid line depicts the average envelope.
Middle: An artifact in electrode FC5 leads to a degenerated
CSP pattern and poor classification performance. Right: The
nonstationary nature of EEG may lead to a feature distribution
which changes with time. Classifiers which assume stationar-
ity will perform poorly in this case.

classifiers, e.g., Linear Discriminant Analysis (LDA), assume
that data are sampled from a stationary distribution. Possible
remedies are the use of (unsupervised) adaptation techniques
or extraction of stationary features.

In practice, the presence of artifacts does not necessarily
lead to poor performance. On the contrary, sometimes arti-
facts such as tiny eye or muscle movements are unconsciously
used as basis for controlling a BCI. This is in general undesir-
able because the aim of a BCI is to rely only on brain activity
for control. If a BCI system is controlled by muscle artifacts,
it may be of no use in patients who, e.g., are not able to move.

We propose to tackle noise, artifacts and nonstationarity
by using a divergence-based spatial filtering approach with a
robust divergence and a regularization term which penalizes
time dependency of the feature distribution.

3. DIVERGENCE-BASED SPATIAL FILTERING

3.1. Common Spatial Patterns

Spatial filtering is a common way to enhance the signal-to-
noise ratio in motor imagery BCIs. A well-suited method for
computing spatial filters is Common Spatial Patterns (CSP)
[2] [3]. The CSP filters maximize the variance ratio between
two motor imagery conditions, thus focus on the synchro-
nization and desynchronization effects (ERS/ERD) induced
by motor imagery. Mathematically, spatial filters wi are com-
puted by solving a generalized eigenvalue problem

Σ1wi = λ1Σ2wi

where Σ1 and Σ2 ∈ RDxD are the average covariance matrices
of motor imagery class 1 and 2. The obtained spatial filters
W = [w1, w2, ..., wD] are sorted according to their contribut-
ing discriminative qualities [10].
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3.2. Spatial Filtering Framework

Recently, the authors of [10, 11] showed that spatial filter
computation can be cast into a divergence framework. This
formulation has the advantage that it embeds the CSP algo-
rithm into a mathematical framework which allows to propose
novel CSP variants by applying the “divergence trick” [10],
i.e., by keeping the mathematical formulation of the problem
but using other divergences with different properties.

In the divergence framework, robustness can be achieved
by decomposing the divergence between the average class
distributions into the sum of trialwise divergences and lim-
iting the influence of single (potentially outlier) terms. This
changes the objective function to

Lrob(V ) =

1

2n

n∑
i=1

n∑
j=1

D̃β

(
N
(
0, V >Σi1V

)
|| N

(
0, V >Σj2V

))
where D̃β(p || q) = Dβ(p || q) + Dβ(q || p) stands for the
symmetric Beta divergence, N (0,Σ) denotes the Gaussian
distribution with mean 0 and covariance Σ, n represents the
number of trials per motor imagery condition and Σic stands
for the estimated covariance matrix of condition c and trial i.
Note that the divergence formula used in [10, 11] only com-
pares the ith trial of one class with the ith trial of the other
class. We refer to the above objective function as i vs. j and
to the objective function used in [10, 11] as i vs. i.

In order to tackle the nonstationarity problem, a regular-
ization term can be included into the divergence framework.
One way to measure nonstationarity is by using the average
divergence between the data distribution of individual trials
and the overall data distribution of a class. Since we aim to
minimize nonstationarity we need to subtract this regulariza-
tion term from the objective function, i.e.,

Lrobstat(V ) = (1− λ)Lrob(V ) −

λ
1

2n

2∑
c=1

n∑
i=1

Dβ

(
N
(
0, V >ΣicV

)
|| N

(
0, V >ΣcV

))
For λ > 0 the solution is regularized towards stationarity.
Note that although the authors of [10] used the same regu-
larization term, they did not jointly tackle the robustness and
nonstationarity problem.

3.3. Heavy-Tail Model

An alternative to using Beta divergence for robust spatial filter
computation is the usage of heavy-tailed probability models.
For instance, the authors of [12] proposed a robust variant of
the CSP algorithm based on a Student’s t-distribution model.
In this paper we investigate the use of Student’s t-distribution
as an alternative to the Gaussian model in the divergence
framework. The natural equivalent to KL divergence for this

class of distributions is the so called t-divergence [13] defined
as

Dt(p || p̃) =

∫
q(x) logt p(x)− q(x) logt p̃(x)dx

with logt(x) =

{
log(x) if t = 1
x1−t−1

1−t otherwise

For the zero-mean Student’s t-distribution model

S
(
x; 0, Σ̄, ν

)
=

Γ((ν + d)/2)

(πν)d/2Γ(ν/2)| Σ̄ |1/2
(1 + x>(νΣ)−1x)−(ν+d)/2

the objective function to be maximized

Lt(V ) =

1

2n

n∑
i=1

n∑
j=1

D̃t

(
S
(
0, V >Σi1V, ν

)
|| S

(
0, V >Σj2V, ν

))
has explicit form (see [13])

Lt(V ) =
ζ

2n

n∑
j=1

n∑
i=1

(
| Σ̄i1 |

t−1
2

(
d− tr

(
(Σ̄

i
1)−1 Σ̄

j
2

))
+| Σ̄j2 |

t−1
2

(
d− tr

(
(Σ̄

j
2)−1 Σ̄

i
1

)))

with constant ζ = 1
d(t−1)−2

(
Γ( 1

t−1 )

(π( 2
t−1−d))

d
2 Γ( 1

t−1−
d
2 )

)1−t

and Σ̄ = V >ΣV ∈ Rd×d being the projected covariance ma-
trix, Γ(·) representing the Gamma function and t = 1 + 2

ν+d
being a free parameter. One can show that for t → 1 this
model is equivalent to using KL divergence with Gaussians,
i.e.,

lim
t→1
Lt(V ) = lim

β→0
Lrob(V )

For t > 1 the distribution has heavier tails.
A detailed derivation of the heavy-tail model and an im-

plementation of all divergence-based algorithms are available
at www.divergence-methods.org.

4. EXPERIMENTAL EVALUATION

4.1. Data Set & Setup

We use the Vital BCI data set [14] for experimental evalu-
ation. It contains EEG recordings from 80 healthy subjects
performing motor imagery tasks with the left and right hand
or with the feet. It consists of one calibration session (75 trials
per class) and one test session (150 trials per class) with visual
feedback (cursor moving on the screen), both recorded on the
same day using a multichannel EEG amplifier (BrainAmp DC
by Brain Products GmbH) and 118 Ag/AgCl electrodes. The
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following preprocessing steps were applied to the data. We
manually select 62 electrodes densely covering the motor cor-
tex and filter the data in a subject specific frequency range [2]
with a 5th order Butterworth filter. The time segment used for
classification is also subject specific [2]. For simplicity and
computational efficiency reasons we only use two spatial fil-
ters and fixed parameters λ = β = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5
and t = 1.05, 1.1, 1.2, 1.3, 1.4, 1.5. The divergence-based al-
gorithms are initialized with the CSP solution and max. 100
iterations are performed. We refer the reader to [10] for more
algorithmic details on the divergence framework.

4.2. Results

The mean and median error rates of the different spatial fil-
tering methods are summarized in Table 1. The top row
displays error rates when using the signal recorded at fixed
electrode locations (C3, C4 and Cz) as basis for classifi-
cation. Since spatial filtering increases the signal-to-noise
ratio, the error rates of CSP and the divergence-based meth-
ods are much lower than the error rates of this simple “raw
signal” approach. This result demonstrates that spatial fil-
tering effectively reduces noise. The third and fourth rows
display the error rates of the robust Beta divergence-based
spatial filtering method. Note that the asterisks indicate
significant improvements over the CSP baseline (number of
asterisks corresponds to significance levels 0.05%, 0.01% and
0.001%). The left columns show the significance test results
when evaluating the mean differences using a one-sided t-test
whereas the right columns display the results of the one-sided
Wilcoxon sign-rank test (i.e., median differences).

For β values 0.2 and 0.3 the robust (i vs. i) method sig-
nificantly outperforms CSP. This result demonstrates that (i)
artifacts negatively affect the CSP algorithm, (ii) one can sig-
nificantly improve the quality of the computed spatial filters
by using a robust divergence and (iii) error rates can be de-
creased even when using a fixed β parameter for all subjects.
Our results also indicate that computing the filters in a i vs. i
manner is superior to the i vs. j strategy. This is likely due to
the nonstationarity of the signal. Considering the divergence
between trials from the beginning and end of the training ses-
sion may negatively affect the results because some of the
difference may be due to nonstationarity and be neurophysio-
logically meaningless. In i vs. i, the divergence is only com-
puted between close (in terms of recording time) trials, thus
this problem does not occur. The average computation time
(100 iterations) was 28 sec for i vs. i and 1040 sec for i vs. j.

The next two rows of Table 1 show that the joint opti-
mization of robustness and stationarity further improves the
results. Note that we neither vary the time scale of potential
changes (i.e., chunk size, see [10]) nor do we select the opti-
mal β and λ parameters. We expect further improvement in
classification accuracy when carefully adjusting these free pa-
rameters. Although the average improvement is rather small,
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Fig. 2: Effect of a single outlier on the KL, Beta and t-
divergence.

for particular subjects it can be up to 30%. For instance, the
error rates of subject 22 decreases from 49.3 % to 26 % . For
this subject only the combination of robust divergences and
regularization yields an improvement, applying each of these
strategies separately does not decrease error rates.

The heavy-tail distribution model does improve perfor-
mance over the CSP baseline in our experiments. The rea-
son for this is that we applied a heavy-tail distribution with
fixed parameter t to all trials, despite the fact that trials were
affected by outliers quite differently. Figure 2 shows the di-
vergence between data x sampled from a zero-mean Gaussian
distribution with variance one and the same samples with an
additional outlier included y = [x ξ]. If we do not add the
outlier ξ to the data (strength 0), then the divergence is zero
because y = x. However, when increasing the strength of
the outlier (i.e., it’s value), the divergence between x and y
increases, i.e., both distributions become more and more dis-
similar. For KL divergence (blue line) this increase is substan-
tially larger than for Beta divergence (red lines), but smaller
than for t-divergence (black lines). This is because the heavy-
tail distribution (with large t) fits the “clean + outlier” data y
much better than a Gaussian distribution, but is a bad model
for the “clean” data x which does not show heavy tails. Since
we use a fixed t parameter for all trials, i.e., do not distin-
guish between clean trials which should be modeled by a
Gaussian and artifactual trials which benefit from a heavy-
tailed distribution model, we are not able to robustify the spa-
tial filtering against artifacts using the Student’s t-distribution
model. Thus, in practice we recommend to use Beta diver-
gence when individual outliers are present in the data and use
the t-divergence model when most trials follow a heavy-tailed
distribution.

5. CONCLUSION & FUTURE WORK

In this paper we investigated the use of divergence methods
for Brain-Computer Interfacing. Using the recently proposed
divergence-based spatial filtering framework we could signif-
icantly increase classification accuracy and reduce the influ-
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Table 1: Error rates for 80 subjects of the Vital BCI Data Set and different parameters β, λ and t.

Method Mean [%] Median [%]
λ, β 0.05 0.1 0.2 0.3 0.4 0.5 0.05 0.1 0.2 0.3 0.4 0.5
t 1.05 1.1 1.2 1.3 1.4 1.5 1.05 1.1 1.2 1.3 1.4 1.5

raw signal 36.3 37.0

CSP 29.3 27.3

robust (i vs. i) 29.5 28.9 28.3∗ 28.3∗ 28.5 28.8 28.6 28.7 27.7 26.7∗ 26.7 26.5
robust (i vs. j) 29.5 28.8 29.1 29.1 29.3 29.7 26.6 26.0 26.3 26.5 26.6 27.5
robust & stationary (i vs. i) 29.3 28.5∗ 27.9∗∗ 27.9∗∗ 28.7 29.0 28.6 28.9∗ 26.2∗ 26.2∗ 27.0 26.8
robust & stationary (i vs. j) 29.0 28.5 28.7 28.3∗ 28.0∗∗ 28.4∗ 26.5 26.0 26.3 26.2 26.2∗∗ 26.7∗

heavy-tail (i vs. i) 31.0 30.8 30.8 30.8 30.8 31.1 29.8 29.7 29.8 30.7 31.3 32.0
heavy-tail (i vs. j) 30.3 30.1 29.1 29.1 29.4 29.9 31.0 30.8 26.5 27.3 28.2 27.6

ence of artifacts and nonstationarity. The heavy-tail distri-
bution model could not improve performance over the CSP
baseline, because this model does not work well when trials
are affected by outliers very differently. Since a heavy-tailed
distribution is a suboptimal model for clean data, the t param-
eter should be determined for every trial individually. Beta
divergence implicitly applies this kind of individual weight-
ing of trials, thus should be preferred when data is contami-
nated by artifacts. In future work we will continue investigat-
ing the use of robust divergences in the context of out-of-lab
BCI. Furthermore we plan to extend the scope of application
of divergence-based methods from mere spatial filter compu-
tation to direct and adaptive classification. Finally we plan to
compare the divergence methods with the Riemannian Dis-
tance [15], the natural metric for covariance matrices, in terms
of performance and computational efficiency.
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