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ABSTRACT

We extend the concept of stationary temporal signals to sta-
tionary graph signals. Doing so, we introduce the concept of
strict sense stationary and wide sense stationary graph signals
as a statistical invariance through an isometric graph transla-
tion operator. Using these definitions, we propose a spectral
characterisation of WSS graph signals allowing to study sta-
tionarity using only the spectral components of a graph signal.

Finally, we apply this characterisation on a synthetic
graph in order to study a few important stochastic graph
signals. Also, using geographic data, we study weather read-
ings on a graph of weather stations and show evidence of
stationarity in the temperature readings.

Index Terms— Signal processing on graphs, stationary
signals

1. INTRODUCTION

The evolution of computing capabilities or techniques have
produced an avalanche of data, and more importantly struc-
tured data. Social networks connecting people, technologi-
cal networks connecting computers or smart devices, or geo-
graphic data are a few examples among many.

The emerging field of signal processing aims at tackling
the problem of studying these data using the powerful ap-
proach of signal processing. The question at hand is then how
to extend successes obtained by signal processing on tem-
poral data or images to the less ordered, more complex, yet
very rich graph structures. Recent successes include, but are
not limited to, filtering [1], short-time Fourier transform and
wavelets [2], empirical mode decomposition [3], or incerti-
tude principle [4].

This communication aims at being part of this journey to
a powerful signal processing on graphs. We propose a defini-
tion of stationary graph signals, a class of signal that proved to
be crucial in the context of temporal data [5]. A spectral char-
acterisation of those signals completes the definition. Finally
we apply those to a few illustrative applications.

Work partially funded by Labex MILYON.

2. BACKGROUND

2.1. Stationary Time Signals

We denote x(t) a stochastic signal. Throughout this com-
munication, variables written with a bold font are stochastic
variables. Among the wide class of stochastic signals, one
subclass is of particular interest: the stationary signals. The
initial definition is that of Strict-Sense Stationary (SSS) sig-
nals verifying:

∀t, ∀s, x(t)
d
= x(s), (1)

i.e. the probability density functions of x(t) and x(s) are
equal.

This property is in practice impossible to verify since it
involves the computation of all statistical moments. We usu-
ally are satisfied with a less strict definition named Wide Sense
Stationary (WSS). A signal is WSS if its first two moments
ηx(t) = E[x(t)] and Rx(t, s) = E[x(t)x∗(s)] verify:

ηx(t) = ηx (2)
Rx(t, s) = γx(t− s). (3)

The first order property (2) is equivalent to the first moment
being the Direct Current (DC) component of the signal. In the
second order property (3), the function γ is called the auto-
correlation function of the signal. In the context of WSS time
series, R is a Toeplitz matrix with Rij = γ(ti − tj).

WSS signals admit a harmonic decomposition, i.e. they
can be written as the Fourier-Stieljes integral:

x(t) =

∫ ∞
−∞

e−ıωtdX(ω), (4)

with dX(ω) a probability measure on the spectral decomposi-
tion of the signal named the spectral increments. Stationarity
is then characterised by a double orthogonality [5]: The ex-
ponential basis is orthogonal, and the spectral increments are
orthogonal:∫ ∞

−∞
eıωte−ıω

′tdt = 2πδ(ω − ω′) (5)

E[dX(ω)dX(ω′)∗] = 2πδ(ω − ω′)Γ(ω)dωdω′, (6)
Γ(ω) being the Fourier transform of γ(t), and called the
power spectrum density. Stochastic signal analysis of x of-
ten involves the study of γ(τ) and Γ(ω) making these two
functions crucial to the field [6].
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Both definitions of stationarity naturally invoke the time
shift operator. Let Tτ be the time shift operator acting on a
signal x as Tτ{x}(t) = x(t − τ). The SSS property reduces
to a statistical invariance of a stochastic signal with respect
to Tτ , while WSS is the invariance of the first two moments
(ηx = ηTτ{x} and Rx = RTτ{x}).

In other words, given a time instant, the statistical prop-
erties of the signal and its translated version are statistically
the same at that instant. Also, the samples of the signal at
all time instants are statistically the same. For temporal sig-
nals these two properties are equivalent, but are worth notic-
ing since only one of them will remain true for graph signals.

In addition, given eω(t) = eıωt the Fourier mode of (an-
gular) frequency ω, the expression of the time shift in the fre-
quency domain is given by:

Tτ{eω}(t) = e−ıτωeω(t). (7)
The Fourier modes are eigenvectors of the time shift operator.
Therefore, the time shift behaves as a phase shifting operator
in the frequency domain. We refer the reader to [5, 6] for
details on stationarity.

2.2. Signal Processing on Graphs

We now introduce the field of signal processing on graphs.
Let G = (V,E) be a graph, with V the set of vertices and E
the set of edges ij. We suppose the graphs to be symmetric,
i.e. ij ∈ E if and only if ji ∈ E. Let A be the adjacency
matrix of G, with aij the weight of the edge ij. Let D be
the diagonal matrix of degrees dii =

∑
j aij = di. Since

G is symmetric, A is a symmetric matrix. We define then
L = D − A the Laplacian matrix of G. L is a semi-definite
positive matrix. Let Lχl = λlχl be the eigendecomposition
of L, with 0 = λ0 ≤ λ1 ≤ . . . [7, p. 4]. We will suppose the
graph to be connected such that λ1 > 0 [7, Prop. 1.3.7].

We call a graph signal a function assigning values to ver-
tices: X : V → R or C. Most often, the Fourier transform
is defined as the projection on the basis of eigenvectors of
L [2]. Let F be the matrix of this Fourier transform. We
have L = F ∗ΛF , with Λ = diag(λ0, . . . , λN−1). Since L
is semi-definite positive, {χl}l is orthogonal and the matrix
F is unitary. We have an equivalence of Parseval’s identity:
‖X‖2 = ‖FX‖2, with ‖X‖22 =

∑
i |Xi|2 the l2-norm. We

denote X̂ = FX the Fourier transform of a signal X .
Let H be a linear operator on graph signals. We use the

notation H to denote both the operator and its matrix repre-
sentation. Its action is that of X 7→ HX , with X represented
as a column vector. We denote Ĥ = FHF ∗ the expression
of H in the Fourier domain.

3. STATIONARITY FOR GRAPH SIGNALS

Stochastic analysis for temporal signals have produced very
interesting results such as optimal noise filtering (Wiener fil-
ters), predictive systems (ARMA models) or non-stationary

signal analysis (wavelet-based statistical inference, e.g. de-
noising), and we naturally wish to leverage the full potential
of the statistics of graph signals for their analysis. In partic-
ular, Wiener filters are of interest for graph filters [8]. Nat-
urally, we need definitions, concepts and associated charac-
terisations for that purpose. As seen in the previous section,
stationnarity is one of those important concepts and we pro-
pose to define its counterpart for graph signals.

For temporal signals, stationarity can be interpreted as the
statistical invariance by time shifting. There exists in the lit-
erature two operators defining equivalents of the time shift
for graph signals. The generalized translations in [9] define
operators acting as generalized convolution by a delta cen-
tred on vertex i whose expression in the Fourier domain is
T̂iX(l) =

√
Nδ̂i(l)X̂(l). These operators, when applied to

very specific input signals, localise their input around vertex
i. The authors of [1] proposed the graph shift as the matrix
multiplication X 7→ AX . The graph shift is then an operator
diffusing a sample from one vertex to its neighbours accord-
ing to the edge weights.

Unfortunately, neither operator is isometric with respect
to the l2-norm, i.e. ‖TiX‖2 6= ‖X‖2 and ‖AX‖2 6= ‖X‖2.
As opposed to the time shift, these two operators lack the
mathematical comfort of isometry to define statistical invari-
ance. In [10], we proposed an alternative shift operator for
graph signals which is isometric by design. After recalling
its definition, we use it to propose a definition of stationary
graph signals.

3.1. Graph Translation

In [10] we proposed the graph translation as a new operator
defined by analogy to the time shift for temporal signals. To
this end, the graph translation is defined as an isometric op-
erator shifting the phase of each of the spectral components
of the input, similarly to (7). More precisely, we define graph
frequencies as:

ωl = π
√
λl/ρG , (8)

where ρG is an upper bound of λl [11, Cor. 3.3]:

ρG = max
i∈V

√
2di(di + d̄i) with d̄i =

∑
ij∈E wijdj

di
.

The graph frequencies lie in [0, π], and a small ωl corresponds
to a Fourier mode χl of lower frequency.

The graph translation is then defined as a phase shifting
operator on the spectral components, and verifies TGχl =
e−ıωlχl:

Definition 1 (Graph Translation). The graph translation op-
erator is defined using its matrix representation as:

TG = exp
(
−ıπ

√
L/ρG

)
.

Details on the construction, justification of the formula,
and comparison to the generalized translations and graph shift
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can be found in [10]1.

3.2. Definition of stationary signals

We now propose to define stationarity for graph signals as the
statistical invariance to the graph translation:

Definition 2 (Strict-Sense Stationary). A stochastic signal X
on the graph G is Strict-Sense Stationary (SSS) if and only if:

X
d
= TGX. (9)

Def. 2 is tractable thanks to the isometric nature of the
graph translation. However, as for temporal signals, SSS is
difficult to verify in practice, and we introduce a weaker, more
practical definition of stationarity:

Definition 3 (Wide-Sense Stationary). A stochastic signal X
on the graph G is Wide-Sense Stationary (WSS) if and only if:

E[X] = E[TGX] (10)
E[XX∗] = E[(TGX)(TGX)∗]. (11)

The invariance property is interpreted as follows: Given
a vertex i ∈ V , the random variables Xi and (TGX)i are
statistically equal (SSS) or have identical moments of the first
and second orders (WSS). However, in contrast to temporal
signals, given two different vertices i and j, there is in general
no equality in law between Xi and Xj .

The definition of WSS signals is introduced in the vertex
domain. As for temporal signals, we propose a dual char-
acterisation of WSS signals in the spectral domain. We be-
gin by the first moment. Let η = E[X] be the mean of the
graph signal. Eq. 10 is then equivalent to η = TGη. In other
words, η is an eigenvector of TG associated to the eigenvalue
1 = e0 = e−ω0 . Since λ1 > 0, η is collinear to χ0: The
vector of mean is collinear to the Fourier mode of frequency
ω0 = 0. As for temporal signals, the mean of the signal is the
equivalent of its DC component.

Next, we characterise the second moment. Let R =
E[XX∗] be the autocorrelation matrix of the signal. Eq. 11
gives then:

R = E[(TGX)(TGX)∗] = TGE[XX∗]T ∗G = TGRT
∗
G .

Let S = E[(FX)(FX)∗] be the autocorrelation matrix of the
Fourier transform of the signal. By linearity of the Fourier
transform, we obtain S = FRF ∗ and R = F ∗SF . The
equality above becomes:

S = T̂GST̂G
∗
. (12)

Assuming that all eigenvalues of L are distinct, then (12) is
verified if and only if S is diagonal. In other cases, S diago-
nal is a sufficient, but not necessary, condition. We can now
formally write the spectral characterisation of WSS signals:

Proposition 1 (Second Moment Characterisation). The sec-
ond moment of a graph signal is invariant through graph

1and animations on http://perso.ens-lyon.fr/benjamin.girault/.

translation if its spectral components are uncorrelated (suffi-
cient condition). This condition is also necessary if all graph
frequencies are distinct.

The eigenvalue uniqueness condition is actually verified
on many real world graphs. i.e. when weights depend on mea-
surements. This comes from the fact that a small random per-
turbation of weights will slightly change the eigenvalues mak-
ing them easily unequal. On the contrary, synthetic graphs
showing high regularity, such as cycles, or regular grids with
unit weights have many multiple eigenvalues [7, Sec. 1.4.6].

Prop. 1 is similar to the spectral characterisation of WSS
time series (resp. WSS signals) where the spectral compo-
nents (resp. the spectral increments) are uncorrelated. We
have then a doubly orthogonal decomposition.

3.3. Discussion

We remark first that the operator TG is in general a complex
operator, meaning that if X is real-valued, then TGX is usu-
ally complex. For WSS signals, this is not an issue since
Prop. 1 shows that only the correlation between spectral com-
ponents matters: A signal can be both WSS and real, and both
sides of (11) are real for WSS signals.

We consider now the SSS property in the particular case
of real-valued signals. Let X be such a signal. Def. 2 and the
Fourier transform give then:

∀i,∀x,P[Xi = x] = P[(TGX)i = x],

and by linear combination of the equalities above:

∀l,∀x̂,P[X̂l = x̂] = P[(T̂GX̂)l = x̂]

⇔ ∀l,∀x̂,P[X̂l = x̂] = P[e−ıωlX̂l = x̂].

When l 6= 0, e−ıωlX̂l is complex and X̂l is real, such that
the probabilities above are non zero only for x̂ = 0 = X̂.
Therefore:

∀l 6= 0,P[X̂l = 0] = 1.

A real SSS signal is reduced to a DC component of random
amplitude.

On the other hand, complex graph signals do not suffer
from this constraint. This contrasts with temporal SSS signals
that can be real without reducing to a DC component.

Another remark concerns the autocorrelation matrix R.
We know that for temporal WSS signals, this matrix is
Toeplitz. This is not the case for graph signals. This is to
be expected since having such a structure would mean having
an autocorrelation function γ which is a function of the dif-
ference between vertex indices. In general such a difference
does not make sense. For example, shifting all indices by one
would leave the matrix R unchanged. However, the graph
translation does not perform such a shift such that it is un-
likely that the signal is invariant to both the graph translation
and this vertex index shifting operation.
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Fig. 1: White noise on a graph with σ2 = 1 and zero mean. (a) shows
a realisation of this white noise, and (b) the empirical spectral correlation
matrix computed using 50k realisations.

The characterisation of the first order moment in the pre-
vious section is actually independent of the underlying graph
structure. Indeed, χ0 being always a constant vector, the mean
of a WSS signal is constant across vertices. However, several
definitions of Fourier transform for graph signals exists, F be-
ing one of them. There exists an alternative definition based
on the normalized Laplacian L = D−1/2LD−1/2 [2]. Both
matrices share similar properties. In particular, they are both
semi-definite positive. We denote ψl the eigenvector associ-
ated to the eigenvalue µl of L. Prop. 1 is still valid for the
Fourier transform F . However, and as opposed to χ0, ψ0 is
not constant and equals (

√
d1, . . . ,

√
dN )T . We denote TG

the associated graph translation. We can then use this graph
translation to obtain an alternative definition of stationarity. A
connected graph verifies µ1 > 0 such that a WSS signal has
a mean vector collinear to ψ0. Finally, results on the second
moment can be adapted to TG directly.

The use of F or F carries then a different notion of DC
component, adapted or not to the local structural properties
of the vertices. This accounts for the heterogeneity between
vertices weighing differently in the graph structure. Using the
Laplacian matrix or the normalized Laplacian matrix carries
then different meanings, and using one or the other depends
on the application at hand. The rest of this communication
keeps F as the Fourier transform.

Finally, we remark that we can use a different invariant
operator H to define stationarity and still obtain the same
spectral characterisation. Indeed, if H is convolutive and iso-
metric, Eq. 12 is still valid with the necessary condition being
distinct eigenvalues of H . However, the first moment is not
null if and only if 1 is an eigenvalue of H .

4. APPLICATIONS

In this section, we wish to apply the notion of stationary graph
signals we introduced to concrete graph signals. First, using
synthetic signals, and then to study a dataset and the station-
arity of a real world signal.

4.1. Synthetic data

We study now several simple stochastic signals. To that end,
we use the graph of Fig. 1(a) based on [9, Example 1], with

0.0

0.5

1.0

(a) R.

0.0

0.5

1.0

(b) S.

Fig. 2: Empirical second moments of a WSS signal with zero mean and non
uniform spectral power with 50k realizations.

parameters σ2
1 = 1/150 and σ2 = 0.3. This graph has 100

vertices randomly sampled in the unit plane connected by
edges weighted by a Gaussian kernel of the Euclidean dis-
tance in the plane: aij = exp(− d(pi, pj)

2/(2σ2
1)).

We propose to define white noise on graphs as a stochastic
signal having a flat power spectrum, i.e. with S = σ2IN , with
mean collinear to χ0. A realization of white noise with zero
mean is shown on Fig. 1(a). Using Prop. 1, a white noise
is a WSS signal. Since the Fourier matrix F is unitary, we
have also R = σ2IN . Therefore, the samples on vertices are
uncorrelated, and of equal variance.

We consider now a signal X with samples on the vertices
independent and identically distributed (i.i.d.). Then, R =
σ2IN = S. X is therefore a white noise. The whole class of
white noise is actually independent of the underlying graph
structure. Indeed, the samples being uncorrelated, the edges
play no role in explaining any correlation between them.

The third signal we consider is a WSS signal with non-
constant power spectrum, i.e. with S diagonal but of non
constant diagonal. Without loss of generality, we suppose
the mean of the graph signal to be zero. Fig. 2 shows the
empirical correlation matrices R and S obtained using 50k
realisations. In general, such a signal has correlated samples,
but in contrast to temporal signals, the second moment is in
general not constant across vertices, i.e. the diagonal of R is
not constant. Therefore, the mere fact that the signal is WSS
is not a guarantee that the samples have the same variance.

This is an illustration of the property that WSS depends
on the underlying graph structure. Also, as soon as the signal
shows some correlations between vertices, the edges of the
graph contribute to explaining those correlations.

4.2. Real dataset

The French national meteorological service published in open
access a dataset of hourly weather observations in Brittany
for the month of January 20142. From this dataset, we wish
to study the temperature readings on the graph of ground
weather stations. We define the graph of ground stations to be
an image of the spatial distances between stations. Fig. 3(a)
shows it. Each vertex (i.e. ground station) is connected
to other vertices by edges weighted by a Gaussian kernel
(σ2

1 = 5.108, σ2 = 105) of the spatial distance between them.

2https://www.data.gouv.fr/: hourly data of the Molène zone.
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(b) Temperature variations.

Fig. 3: Spatial and temporal variations of temperatures in Brittany in January
2014. (a) mean temperature of each station. (b) temporal variations of three
stations circled in (a) on top, and first IMF of these time series below.

Note that these arbitrary parameters can be slightly changed
without altering the results.

We wish to assess the stationarity of the temperature
readings. Let Xi(t) be the temperature at vertex i at time
t. Fig. 3(a) shows the mean temperature of each station.
This mean is obviously not constant, hence not collinear to
χ0. Therefore, we cannot model the readings Xi(t) using a
stationary graph signal of which the readings are realisations.

Fig. 3(b) shows the temperature variation over time of
three ground stations. We observe that these time series have
a significant trend together with seasonal variations. Unfor-
tunately, for empirical estimators to be valid (ergodicity hy-
pothesis), we need to remove these trend and variations to
obtain stationary time series. To this end, we consider the
first Intrinsic Mode Function (IMF) of the Empirical Mode
Decomposition of each of the time series Xi [12]. The first
IMF goal is precisely to remove the trend of a time series. We
denote the first IMFs Yi. Since the time series Yi are centred,
the first empirical moment of Y is zero.

Fig. 4 shows the empirical correlation matrices of Y and
of its spectral decomposition Ŷ. The matrix RY shows some
significant off-diagonal elements, suggesting spatial corre-
lations between vertices. On the other hand, SY has fewer
significant off-diagonal elements. The spatial correlations are
therefore interpreted by uncorrelated spectral components:
The graph structure interprets Y as a stationary graph signal.

More precisely, the temperature readings are split into two
parts summing up: the trend and seasonal variations removed
by the EMD on one hand, and the spatial correlations ex-
plained by a stationary graph signal on the other hand. More
details on the stationarity assessment of this dataset can be
found in [13].

0.0

0.2

0.4

(a) |RY|.
0.0

0.3

0.5

(b) |SY|.

Fig. 4: Correlation matrix (a) and spectral correlation matrix (b) of the IMF1
Y of Fig. 3(b).

We stress here that this assessment of stationarity is per-
formed with respect to the graph structure we defined. This
graph can be defined differently leading to another definition
of Fourier transform, and eventually of stationarity.

5. CONCLUSION

This communication introduces two definitions of stationary
graph signals. In particular, our definition of WSS graph sig-
nals is simple yet rich enough to allow a tractable spectral
characterisation. These definitions and their consequences
share many properties with temporal signals, however, the
more complex structural properties of graphs introduce fun-
damental differences with time, accounting for the hetero-
geneity of the structure.

Facing the still infancy of graph signal processing, our
contribution brings in an important ingredient that will serve
as the starting point of further development towards the con-
stitution of an entire toolbox for analysing real-world mea-
surements modelled as stochastic signals on graphs. A few
examples in that toolbox include the study of more classes of
stochastic signals, being stationary or not, optimal filtering,
or the development of a stationarity test.
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