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ABSTRACT

In this paper, we extend the classic analytic signal to the
Vector-valued Hyperanalytic Signal (VHaS) that is denoted
to distinguish from the multivariate hypercomplex data. The
2d-Dimensional (2d-D) VHaS, S(t) : [0,1] — Cqq, is de-
fined by a complexification of two d-D Vector-valued Hyper-
complex Signals (VHcS), S(t) := G(t)eg + HS2[G](t) eq.
where HS2¢ and e; represent the Hilbert transform and the
ith unit axis, and G(t) € Cy,e; € Cyy. Inspired by the
unique polar form of a classic analytic signal and the one
of a 4-D VHaS proposed in [1], we provide a theoretical
explanation of the unique polar representation of a 6-D or
8-D VHaS by replacing the quaternion with octonion, which
further implies the possible extension for d-D VHaS with
d > 8. Moreover, the derived continuous VHcS envelope and
phase from the polar form lead to a unified definition of the
time-frequency-amplitude spectrum of the given VHcS G (t).

Index Terms— vector-valued hypercomplex signal,
vector-valued hyperanalytic signal, quaternionic signal, oc-
tonionic signal, unique polar representation, time-frequency-
amplitude spectrum.

1. INTRODUCTION

Given a real bounded signal ¢g(t) : [0,1] — R, the corre-
sponding 2-Dimensional (2-D) Analytic Signal (AS) s(¢) :
[0,1] — Cq is defined as a complexification of g(t) and
its Hilbert transform H[g](¢), s(t) := g(t)eo + Hlg](t)e1,
where ep,e; € C, are the unit complex axes [2]. It is
well known that s(t) also can be uniquely represented as
a polar form s(t) := a(t)e?™*, in which the nonneg-
ative a(t) and the monotonically nondecreasing ¢(t) are
called the instantaneous envelope and the instantaneous
phase [3]. In other words, the canonical pair (a(t), ¢(t))
is in a one-to-one correspondence with g(t) [4]. The non-
negative instantaneous frequency can be defined as the
derivative of the phase f(t) := 5-¢'(t), and the Hilbert
Time-Frequency-Amplitude (TFA) spectrum is defined as
{a(t) on the curve (¢, f(¢))} [5]. Since the AS model pro-
vides a splendid relationship between the temporal signal
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and its instantaneous TFA spectrum, the valuable information
involved in the signal, e.g the feature, mode, or pattern, that
might be invisible to our eyes, can be clearly observed on the
instantaneous time-frequency (TF) plane [6]. Therefore, the
AS model attracts many researchers’ and engineers’ interests
in both mathematics and signal processing communities.

With the progress of science and technology, sensor array
based detection method has been widely used in practically
every profession, e.g. the multi-lead electrocardiogram or
electroencephalogram recording system in biomedicine, the
sensor array based source localization system in industrial,
or the vector-sensor array network monitoring the geophysi-
cal data. To supply the increasing requirement of the multi-D
data analysis, it is pressing and significant to extend the clas-
sic AS theory into multi-D space.

In fact, the multi-D signal consists of multi-variate sig-
nal, s(X) € R, X € [0,1]%, and the Vector-valued Signal
(VvS), S(t) € R ¢t € [0,1]. Tt should be noted that the
VvS sometimes can also be considered as Vector-valued Hy-
percomplex Signal (VHcS), S(t) := Zle s;(t)e;—1, where
s;(t) is the ith subcomponent of S(t), eq is the unit real axis,
and e;,7 = 1,...,d — 1, are other unit imaginary axes. For
the multi-variate signal, there are substantial studies cover-
ing the basic theory [7, 8], image processing [9-11], and the
N-D extension [12]. However, for the VvS, the AS theory
in multi-D space has not yet been achieved completely. In-
spired by the original study in [13], Sangwine el al. firstly
investigated the complexification of two complex signals by
introducing quaternion numbers [14], and the polar represen-
tation of the Quaternionic Hyperanalytic Signal (QHaS) [15],
from which one can derive the instantaneous complex enve-
lope and the instantaneous complex frequency. Huang el al.
developed an algorithm to uniquely represent the polar form
of a given QHaS [1]. However, the AS theory and the unique-
ness of the polar representation of a Vector-valued Hyperana-
Iytic Signal (VHaS) are unknown when the dimension of the
VHaS is greater than four. In this paper, we will clarify the
associated problems in dimension extension.

On the other hand, we have to point out that the VvS to
be analyzed in this paper might not be the raw data obtained
from the sensor array based detection system, it should be
some component decomposed from the raw data, e.g. the
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one decomposed by using an empirical mode decomposition
method [16,17], or by using a wavelet based method [18]. The
main reason is because of our original definition of the TFA
spectrum, in which the amplitude should be drawn on the cor-
responding curve (¢, f(t)) on the TF plane. It clearly implies
that the given component should be some simple amplitude-
modulated and frequency-modulated (AM-FM) signal.

In the rest of this paper, Section 2 introduces the basic
knowledge of quaternion and octonion, the unique polar rep-
resentation of the complexified QHaS, together with the idea
to extend the classic AS theory into multi-D space; Section
3 explains how to obtain unique instantaneous quaternionic
envelope, phase and the corresponding TFA spectrum from
a complexified VHaS; Section 4 presents representative nu-
merical results that clearly illustrate the performance of the
proposed method; and Section 5 summarizes the paper.

2. FROM COMPLEX TO X-ON NUMBER

In mathematics, the quaternion and octonion are typical num-
ber systems that extend the complex number. The quaternion
was firstly introduced by Hamilton in 1843, and later the ex-
tended number systems had been comprehensively studied.

2.1. Basic definition of the hypercomplex number

To introduce the whole number system in a uniform version,
we firstly define our number and signal as follows:

Definition 2.1 The d-D hypercomdplex number, G € Cy,d >
2,d € N, is defined as G := ), | gie;_1, where g; is the
ith subcomponent of the vector G € R%, eq is the unit real
axis, and e;,i = 1,...,d — 1, are other imaginary axes.
G would be called as complex, quaternion, octonion, 16-on,
., 2"-on number if we set d = 2,4,8,16,...,2" n € N,
respectively. The d-D Vector-valued Hypercomplex Signal
(VHcS) is defined as the function G(t) : [0,1] — Cq4, G(1) :=
Zle gi(t)ei_1, where g;(t) is the subcomponent of the cor-
responding Vector-valued Signal (VvS) G(t) € R,

Given a hypercomplex number G, its real/scalar part and
residual/vector part are denoted as S[G] := ¢; and V[G] :=
G — S[Gleg respectively. G is called a pure hypercomplex
number if g7 = 0. Each basis e; is considered as the root of
—1lore]e; = —1. The multiplication rule among these bases
depends on which dimension d we are considering. Table 1
illustrates the computation rules for complex, quaternion and
octonion number systems. As one can see, the size of the table
will be doubled if we increase the number of element basis to
support a larger number system.

The conjugate of G is defined as G := S[Gleg — V[G],
the Euclidean norm or the /5 norm of G is defined as

IGlle, = VGG =

%, g2, and the inverse of G is
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Table 1. Multiplication rule among basis elements of com-
plex, quaternion and octonion number system.

defined as G™! ﬁ By introducing the Cayley-
&)

Dickson algebra, any 2d-D hypercomplex number G € Cay,
can be represented as a pair of d-D hypercomplex numbers
C,DeCyeg G:=C+ Dey.

Definition 2.2 Given a hypercomplex number G € Cy, the
exponential and the natural logarithm of G can be defined by

€ = e (cos(IV(G)ea) + it sin(IV(G)lea) ) ()

In(G) :=In(||Gl|e,) + HV\(}g);I)\eQ arccos (”‘chﬁl) 2)

2.2. Vector-valued Hyperanalytic Signal (VHaS)

Since the AS theory of the quaternionic signal has been
studied in [1, 14], we only present necessary definitions and
corollaries here to support our generalized complexification
of VHeS ford > 3,d € N.

Corollary 2.3 Given a VHcS G(t) € C4,d = 2",n € N,
and a unit imaginary axis eq € Cgi1, the Right Fourier
Transform (RFT) of G(t) with respect to (w.r.t) the axis eq
can be sped up by the Fast Fourier Transform (FFT).

Proof: denotes F, .ngd as the FFT and the RFT w.r.t e4 in
the hypercomplex space Ca4, and sets operators R, Z to take
the real and imaginary part of a complex number respectively,

Ge,(f) = FE[GQI(1) = [ G(t)e > *euds

[0,1]
d
_ . e;,_1e 2w fteq
/[0’1] ; 9i(t) dt
d 3)
= et (R(Flgl (1) +Z (Flgi)(t)) ea)

It should be noted that the reason that we require d =
2™, n € Nin Corollary 2.3 is because we have to figure out
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the basis multiplication problem. Therefore we can gain the
benefit from e;_1eq4 = €;44—1 fori = 1,...,d (recall the
multiplication rule in Table 1). In practice such requirement
also cover the case with dimension d # 2" if we can com-
plement additional components with zeros. For instance, if
d = 3 and the given VvS is G(t) = [g1(t), 92(t), g3(t)]7,
the constructed VHcS would be G(t) = g1 (t)eo + g2(t)er +
g3(t)es + Oes. Now, we can extend the classic Hilbert trans-
form into the hypercomplex space without proof.

Corollary 2.4 Given a VHcS G(t) € Cyq,d = 2",n € N
and a unit hypercomplex axis eq € Cgy11, the Vector-valued
Hypercomplex Hilbert Transform (VHHT) of G(t) w.rt eq4
can be expressed in terms of the classic Hilbert transform

! [—easen(f)FE4(G]] (1),

d
= Z Hlgi](t)ei—1

He2[G(t) = Fer

“

where ]-'Ed?d_l is the inverse RFT, and sgn(-) is the signum
function. Finally, we can construct the VHaS by complexify-
ing the given VHcS and its VHHT

Definition 2.5 Given a VHcS G(t) € C4,d = 2",n € N,
the VHaS S(t) € Caq w.rt the ey axis is defined by

S(t) := G(t) + HE2* [G](t)eq. (5)

3. UNIQUE POLAR REPRESENTATION

To keep consistency of the AS theory, we hope the con-
structed VHaS, S(t) € Co4,d = 2",n € N, can be
uniquely represented as a polar form S(t) := A(t)e®®eq,
A(t), ®(t) € C4, where A(t) and ®(¢) denote the instanta-
neous hypercomplex envelope and phase respectively. As [1]
has already investigated the unique polar representation of a
VHaS for n = 1, in the following, we study the dimension
extended case for n = 2. However, we should bear in mind
that the dimension of the VvS G(t) can be 3 or 4. And when
G(t) € R3, we need to supplement one more component of
zeros such that the constructed VHcS G(t) € C4 or VHaS
S(t) € Cs. Considering that the X-on number system will
be more complicated when n > 2, but the unique polar rep-
resentation methods are similar, we only consider octonion
number based unique polar representation in this section.

3.1. Sign ambiguity in the polar form

To let the discussion easier, we start from the hypercom-
plex number but not the signal. Suppose the given hy-
peranalytic number is S := Zle si€i_1,8; € R. 1Its
Cayley-Dickson form can be set as S := C + De,, where
C = Z?Zl s;e;_1 and D = 2?21 Sity4€;—1 are quater-
nions. The corresponding polar form is S := Ae®®4, where
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Fig. 1. An example of the sign ambiguity problem. Here
C(t) == Z?:l s;e;—1 is given; sgn(«) is the unknown sign
signal; A(t) := 221:1 a;(t)e;—1 is the envelope that we
want to retrieve; A[C](t) := Z?zl Sie;_1 and A[A](t) :=
2?21 a;(t)e;—1 are the axes of C(t) and A(t) respectively
(Color online).

A = Z?Zl aei—1,P = Zle ¢;€;_1 are quaternions, and
all coefficients a;, ¢; are real. As ®e, is a pure octonion that
does not contain real part, according to (1), the exponential
of ®e4 can be expressed as

ePes . aep + fes + ves + neg + Eer

(6)
= COS(”(I)HZ’z €y + Z ||(}H sin Hq)Hfz)eH-ig
2
where [|®||,, = /37, ¢2. Then, we obtain
8
S = Zsiei,l = C+ Dey = Ae®e
i=1
=aA + alﬁ — a7y — a3n — a4§)e4 (7)
+ (ary + a2 — azé + aqn)es
)

ain + ax€ + azf — asy)es
a1f — agn + azy + asf)er

~ o~~~

from the equality C = aA, we can expect that the axis of
the left hand side quaternion should be equal to the one of the
right hand side quaternion. In other Words by introducing an

axis operator defined by A[G] := HGH ,G € Cq4, we have
AlC
A= 20 ®
sgn(«)

Therefore, we meet a sign ambiguity problem because of the
unknown sgn(«) for retrieving A[A]. Figure 1 illustrates this
phenomenon clearly.

3.2. Unique polar representation

Since it is reasonable to assume a continuous envelope a; (%),
we can easily retrieve the envelope component by component
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using a piecewise recovery algorithm proposed in [1]. After
we obtain the axis A[A], we can directly retrieve the quater-
nionic envelope together with the unknown o

A = [[Af,AA) =[Sl A(A); )
a = %. (10)

Connecting with (7), we can obtain the other unknowns
B,7,n, and £ by solving the following system of equations

a18 — azy — asn — asd = S5

a1y + a2 — az§ +aqn = s¢

. an
ain + a8 + a3 — asy = s7
a1 — azn + azy + a4 = ss
Or we can obtain e®® in an alternative way
AS
Pes = (12)
1SI1Z,

Now, recalling the natural logarithm definition in (2), we can
retrieve the quaternionic phase by

® = A[fey + ye1 + nes + e arccos(a). (13)

In practice, when we consider signals, each component of the
octonionic phase signal ®(¢) should be monotonically non-
decreasing. Fortunately, this requirement can be satisfied by
using a simple unwrapping method that introduced in [1]. Af-
terwards, we can modify the theorem in [1] as

Theorem 3.1 Given a quaternionic signal G(t) : [0,1] —
Cy4, the VHaS can be constructed by S(t) = G(t) +
HE[G(t)]es, S(t) € Cs, which has a unique polar form
S(t) = A()e®We, A(t),®(t) € Cu if (A(t),2(1))
is the canonical quaternion pair where A(t) has a unique
polar form, and ®(t) = Z?:l ¢i(t)ei—1, ¢i(t) > 0,
[2(0)[le, € [0, 2).

3.3. Time-frequency-amplitude (TFA) spectrum

After we obtain the unique polar form of the given hypercom-
plex signal, we can derive the corresponding intantaneous hy-
percomplex frequency together with the TFA spectrum.

Definition 3.2 Given a quaternionc signal G(t) : [0,1] —
Cy4 and its VHaS in a polar form S(t) := A(t)e®®es .=
IS()]le, A[A](t)eXi= @i(Deivs 6. (#) > 0. The instanta-
neous quaternionic frequency of G(t) is defined by

4 4

Fa(t) =) fit)ei1 = % > d(‘zzt(t))eifl.
i=1 =1

(14)

The TFA spectrum can be defined by {||A(t)||¢, on the curve
(t, f1(), f2 (1), f3(1), fa(2)),t € [0, 1]}.
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Fig. 2. Paritial numerical results for the VHaS S(¢) € Cs.
(a) & (b): the subcomponent s (t), s2(t) of the given signal
G(t) € Cy satisfying S(t) = G(t) + HS*[G](t); negat-
ing the theoretical envelope —a;y(t), —as(t), and the recov-
ered ones a;(t),az(t); (c) & (d) the theoretical phase com-
ponent ¢1(t), p2(t), the recovered ones (), po(t) with-
out unwrapping, and the recovered ones with unwrapping
b1(t), d2(t); () & (f): the theoretical instantaneous fre-
quency fi(t), f2(t), the calculated ones based on the pro-
posed method fi(t), f2(t), and the absolute difference be-
tween them, D f1(t) == |f1(¢) — f1(t)[, Df2(t) := [f2(t) —
f2(t)| (Color online).

(f) freq. component w.r.t e;

Remark 3.3 Althought we only introduced the unique polar
representation of a given VS G(t) € R* or a quaternionic
signal G(t) € Cy, the WS G(t) € R? can also be ana-
lyzed by supplement one more component of zeros, e.g. setting
94(t) = 0. Afterwards, we can omit the last component of the
obtained envelope, phase and instantaneous frequency, and
then reduce the dimension to 3.

4. NUMERICAL STUDY

To test the proposed method for time-frequency analysis of a
VHcS signal, we design a representative VHaS signal model

S(t) = A(t)e®Wes e 0,1],
A(t) — 67t62 sin(27rt)ele(47rteg+(27rt+cos(2ﬂ't))el)eg
®(t) := 25mteg + (207t + 8 cos(mt))eq

+ (157t — 8sin(7t))ey + (107t + *)es,

T(15)

in which A (t) is a quaternionic signal that can be presented in
a polar form. From the model we can derive the instantaneous
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quaternionic frequency as

2
F(t) = —560 + (10 — 4sin(nt))ey
2
15 3 (16)
+ (= —4cos(mt))ey + (5 + —e*)es.
2 2m

To save the space, Fig. 2 illustrates part of the numeri-
cal results by using the proposed method. In sub-figures (a)
and (b), the recovered envelope a;(t) coincides strongly with
the ideal one a;(t). Sub-figures (c) and (d) illustrate the im-
portance of the phase unwrapping, while sub-figures (e) and
(f) imply the efficiency of the instantaneous frequency cal-
culation. Since the first component fi(¢) is a constant, the
absolute difference between it and the calculated one f1 (t) is
around machine accuracy. The absolute difference between
f2(t) and fo(t) is larger since fo(t) is nonlinear and thus the
corresponding accuracy is corrupted by the discrete derivative
computation at different time positions.

5. CONCLUSION

We successfully extend the VHaS theory into multi-D space,
and illustrate the corresponding unique polar representation.
Based on the proposed VHaS model, we can obtain a canon-
ical pair of continuously instantaneous envelope and phase,
in which the phase consists of monotonically non-decreasing
sub-components that leads to a natural definition of the in-
stantaneous frequency. Although we only studied the VHaS
model with the dimension d < 8, we have to mention that the
model with d > 8 can be also analyzed by introducing larger
X-on hypercomplex number. Moreover, the way to define hy-
peranalytic signal together with its unique polar representa-
tion will be similar to the method proposed in this paper.
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