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ABSTRACT

This paper presents a new method for separating QAM sig-
nals in time-varying dual-polarized channels. The system ap-
plies an adaptive blind source separation (BSS) method based
on the likelihood functions of the amplitude of the transmit-
ted signals to recover the input signals and to track the time-
varying polarization coefficients. The results demonstrate that
the likelihood-based adaptive BSS method is able to recover
the source signals of different modulation types for a wide
range of input SNRs. The symbol error rate (SER) of esti-
mated signals is close to the theoretical SER of different mod-
ulation types at lower SNRs. At high SNRs, the SERs are
dominated by the source separation errors. The results also
show that this algorithm tracks the time-varying polarization
channels coefficients with small errors.

Index Terms— Likelihood function, blind source separa-
tion, time-varying dual-polarization

1. INTRODUCTION

In many optical and RF communication systems, information
is transmitted through dual-polarization of the carrier to im-
prove transmission rates. For example, in dual-polarized sys-
tems, information may be transmitted through the horizon-
tal and vertical polarizations of the carrier. In most practical
systems, the received signals may not maintain the relative
separation of the polarization angles due to rotation of the po-
larizations and other distortions. In such situations, the two
information-bearing signals reconstructed at the receiver may
be a mixture of the source signals. Additional processing is
required to separate the original transmissions before they can
be demodulated.

In this paper, we present a method for blind source sep-
aration(BSS) of dual-polarized signals with time-varying po-
larization angles. As far as the authors are aware of, there are
no papers dealing with this topic applying BSS algorithms
in the literature. The majority of the literature dealing with
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dual-polarization are focused on recovering the signal from
dual-polarized channels and demodulating the signals assum-
ing known modulation types. In [3], the author developed a
decision-directed polarization algorithm to estimate the dual
polarized channel coefficients. This paper used the correla-
tion matrix between the estimated signal and the output sig-
nal to update the channel coefficients. In [1], the author de-
veloped a least-mean-square (LMS) algorithm to update the
channel coefficients. They assumed that the symbols trans-
mitted were known.

In this paper, we develop an adaptive likelihood-based
blind source separation method, which implements the likeli-
hood functions of the amplitude of the received signals to es-
timate the channel coefficients and the source signals. We as-
sume that the two transmitted signals are independent of each
other but no other information about the communication sys-
tem. We also assume the transmitted signals belong to QAM
signals, but no knowledge of the modulation type is assumed.
This method is different from other BSS algorithms available
in the literature in the sense that the separation is achieved
using a likelihood-based approach that utilizes the probabil-
ity density function(PDF) of the amplitude of the transmitted
signals.

The rest of the paper is organized as follows. Section
2 introduces a model for the received signals with dual-
polarization. In Section 3, the adaptive likelihood-based BSS
algorithm is developed. The performance including the sym-
bol error rate(SER) of recovered signals after applying BSS
and the BSS system’s capability to track the channel coef-
ficients is presented in Section 4. Finally, the concluding
remarks are made in Section 5.

2. SYSTEM MODEL

In this section, the system model of a time-varying dual-
polarization is described. Figure 1 displays the basic model.
The modulated signals are transmitted through the time-
varying dual polarized channels. Let X (t) = [z1(t), z2(t)]
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Fig. 1. Block diagram of a dual-polarized channel.

and Y (t) = [y1(t),y=2(t)] represent the transmitted and re-
ceived signals respectively. Note that the existence of two
channels of transmission is explicitly shown here. The re-
lation between the transmitted and received signals of the
channel can be expressed as

Y(t) = J(t)X (1) + N(t) 1)

where J(t) is a 2 x 2 matrix with elements represent-
ing the time-varying dual-polarization at each time and
N(t) = [Ny(t),Na(t)] is a 2 x 1 matrix with elements
denoting the additive white Gaussian noise in the two chan-
nels at each time. The signal model and dual-polarization
model will be described next.

2.1. Signal Model

We assume a general model for the modulated signal [8] is

y(t) = Re{d (sugr(t — kT}))e? > <t} )
k

where s is a complex symbol sequence with s = ax + jbg,
ar, and by are the real and imaginary parts, 7} is the symbol
period, gr(t) is the pulse shape filter and f. is the carrier fre-
quency. Applying Hilbert transformation to the received sig-
nals, an appropriately sampled complex version of this signal
is given by

y(n) = Z(SkQT(nTs — ka))eﬂTranTs 3)
k

where T is the sampling period.

2.2. Dual Polarized Channels Model

The polarization during transmitting the signals is changed
by the variations of the channel. Therefore the state of po-
larization of a received signal is not known at the receiver.
The unitary Jones matrix shown below describes a common
model for a time-varying dual-polarization channel [3].

cos{v edd)/2 _gindwv e—ie(t)/2
J(t) = ( sin%{v((i))iejg(t)/2 cos{i(gﬁ—jé(t)ﬂ > )

In the above equation, v(t) represents the cross-talk between
the two polarization modes and §(¢) and e(¢) describe the
phase difference introduced by each channel.
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3. LIKELIHOOD-BASED ADAPTIVE BLIND
SOURCE SEPARATION ALGORITHM FOR
COMPLEX SIGNALS

Blind source separation has been widely applied to separate
mixtures of source signals. The received signals in a dual-
polarized channel can be regarded as time-varying mixtures
of the two transmitted signals. The goal of the BSS is to find
a matrix that de-mixes the dual-polarized signals so that the
transmitted signals can be recovered. The problem can be
formalized as follows. We wish to find a time-varying matrix
Q(t) such that

Z(t) = Q)Y (t) )

is 2 x 2 matrix and Z(t) =

ya(t)
Yya(t)

{Zl(t)} _ |:Q11(t)y
2(t)|  [g21(B)yi(t) + goa(t
the input signals X (t).

The goal of BSS is to make the estimated signals Z ()
comparable to the source signals X (¢). One way to achieve
good estimation of the source signals is to maximize the
likelihood functions of Z(t) applying the probability density
function of X (¢). Assuming the source signals belong to
QAM signals, the PDF of the amplitude of different modula-
tion type is known to be [6]

} is the estimation of

N

p(R[Hw) =Y (p(RISar)wwlil)), R > 0,
=1
N 2, 52
LR Z(BTHSHL) RS
= wnlilge =T T h(= 50 (©)

where R is the amplitude of the signal, p(R|H ) is the condi-
tional PDF of the signal amplitude given that the modulation
type is M, {Sym|i];¢ = 1,2,--- , N} is the amplitude val-
ues, wyy[i] is the probability of the ith amplitude value for
the Mth modulation type, o2 is the noise variance and I ()
is the zero-order modified Bessel function of the first kind.

Applying the criteria of likelihood function, the cost func-
tion for BSS can be written as

O(t) =Y _{log(p(l=1(DI1Has)) + log(p(|z2(t)]| Har )}

t

(7
where p(-) is the probability density function(PDF) of input
signal X ().

We use amplitude distribution rather than the distributions
of the source signals for two reasons: (1) The distribution
functions of the amplitude are well defined, and (2) One of
our applications involves the blind modulation identification
using received signals amplitudes.
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Substituting (6) in (7), the cost function becomes

Zlo {Z le L2 (t)le

‘Zl( |SM1 }+Zl {Z wM2

M Z>()|S, [i
Zo(t)e <|2()a|i2u

In order to find the maximum of the likelihood function,
the elements of ((t) are updated by taking the gradient of the
cost function in the following manners.

—(|Zl<r>\ +sM i)

Io(——F5——

)} ®)

Q(t) + ugggg
aC(t) 91Z(t)|

0|1Z(t)| 9Q(t)

Qi+1) =

= Q) +n ©)

The gradient 7] ZE t?\ %‘gg t;‘ will be derived with respect to

each element of the matrix Q(t). As an example, we differ-
entiate with respect to ¢;1 as shown below:

oc(t) 01Z()| _ (@)  Ip(lz(®)]) 0|z (D)l (10)
ANZ(t)] 0qur(t)  p(lza(t)]) Oz (D) Oqua(t)
First, we note that
on(la () _ p(R)
8|2’1( )| OR R=|z1(t)]
le 8R 7(R2+S%/11M) RSy, [7]
—Z = IO(T)
—(R?+8%, [i])/20° ,
le 6@ My ffS]\/[1 [Z]
—i—z R Io( 2 )
+Zle ) 0 0L ()
OR
N W, [l] M RSJWI [Z}
=3 ] S g Rl
i=1
RS, (1], Sw (i),  RSw, ]

R? ) e
~ S Io(=2) + 2L () an
where I (+) is the first-order modified Bessel function of the
first kind.
Then, applying the gradient to real and imaginary part of
¢11(t) separately, we obtain

o)1) da()  R{a) .
)] ~ Raut)  Jam 0O 12
e
3\9{q11(t)} 8\9{Q11(t>}

- W@{m(w}ﬂ%{yxw}ma
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Substituting (10),(11), (12) and (13) in (9), the updating equa-
tion of ¢11 with respect to real and imaginary parts becomes

qi1(t+1) = R{gut+1D)}+53{qi(t+1)}

— R{an®)} +“a§}%8{§1(1() %

O an () + g )
MOR (B0,
P2O) 912 (0)

012 ) 2.0
R{an (0 775 (0]
n(t) (0] R 0)))

~ p(a®) 9] [ 21 (1) yi(t)

S S0} + R (0D

The updating equations for other three elements in (Q)(t) can
be derived similarly as (14).

4. PERFORMANCE EVALUATION

In this section, the performance of the likelihood-based BSS
algorithm is demonstrated by comparing the average symbol
error rates of the separated signals via Monte Carlo simula-
tions with the theoretical SERs. We also present results eval-
uating the ability of the system to track the time-varying co-
efficients of the dual-polarized channel.

Figure 2 shows the comparison between average SERs
with the corresponding theoretical results for different modu-
lation types. In Figure 2, the channel coefficients were v(t) =
15337t,6(t) = 5757t and e(t) = 767wt. This case corre-
sponds to a rotating polarization with period =1.3 ms. The
results are shown for two different cases. The first is when
the two input signals were 16-QAM with 32-QAM signals
and the second is for 16-QAM with 64-QAM signals. The
SNR value is ranged from 0 to 40 dB. We can notice from the
reuslts that the symbol error rates (SERs) of the estimated sig-
nals are close to the theoretical SER of different modulation
types at lower SNRs. At high SNRs, the SERs are dominated
by the source separation errors. This results in essentially no
reduction in SERs with increasing SNR after some threshold.

This happens because that the BSS algorithm introduces a
residual error into the separated signals during the separation
process. At higher SNRs, the effect of this error on SER will
dominate comparing with the effect of channel noise. The
residual error power will depend on the rate of time variations
in the dual-polarization channel and the step size of the adap-
tive separation system. Thus the performance of the receiver
or other types of processors of the separated signals is limited
by these separation errors. Analysis performance of BSS al-
gorithms and similar behavior at high SNRs can be found in
[9] and [10].
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Fig. 2. The comparison between symbol error rate of sepa-
rated signals after likelihood-based BSS and theoretical SERs
at different SNRs: (a) 16-QAM and 32-QAM; (b) 16-QAM
and 64-QAM.

Figure 3 and 4 show the results for the likelihood-based
BSS for different modulation types in the likelihood func-
tions. In Figure 3, we present the results of tracking the coef-
ficients by comparing the estimated coefficients with the in-
verse of dual-polarization matrix. In Figure 4, the product of
J(t) and Q(t) is presented. Here the input two signals are
a 16-QAM signals and a 32-QAM signals. The parameters
of the systems are the same as before. In these two figures,
case 1 is when employed the likelihood functions based on
the exact modulation types, which are 16-QAM and 32-QAM
in this case. Case 2 used 16-QAM based likelihood functions
for both input signals regardless of the modulation types.

We observe from Figure 3 that the system can track the
amplitude of the coefficients with a constant scaling factor
but not the phase of the coefficients. However, from Figure 4
we can see that the two diagonal elements of the matrix for
the product are constant and the two off-diagonal elements
are almost 0. The phase of the two diagonal elements is lin-
ear. This means that the separated signals after the likelihood-
based BSS algorithm will be the source signals with constant
scaled amplitudes and constant phase shifts. This is as ex-
pected for the adaptive source separation algorithms. The
constant scaling factor on amplitude and the linear phase shift
will not change the characteristics of the source signals.

We also observe that modulation types based cost func-
tions exhibited similar performance of tracking the coeffi-
cients as single modulation type based cost function, which
indicates that the modulation types used in the cost function
will not affect the performance of the separation. The PDF de-
scribed in (6) belongs to the sub-Gaussian PDF group regard-
less of the modulation type. This is not a surprising results
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since BSS algorithms employing contrast functions applica-
ble to whole classes of some distributions have been studied
before [4] and [11].
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Fig. 3. Comparison of estimated coefficients with actual co-
efficients at each time.
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Fig. 4. Product of the dual-polarization and estimated coeffi-
cients at each time.

5. CONCLUSION REMARKS

This paper presented a likelihood-based blind separation
method for QAM signals in time-varying dual-polarized
channels. The performance indicated that the likelihood-
based adaptive blind source separation in this paper can
recover the signals from the dual-polarized channels at low
SNRs. The system recovered the signal with small symbol
error rates in a wide range of different SNR value. This al-
gorithm also tracks the time-varying coefficients well. How-
ever, we also showed that the performance capabilities of
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the receiver may be limited by fast variations in the dual-
polarization channels and residual separation errors in the
separation process.

In order to increase the accuracy of the system, we will
improve the adaptive BSS method considering about tracking
the phase of the coefficients in the dual-polarized channels.
Additional performance evaluation including theoretical anal-
ysis of the algorithm will be presented in future papers.
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