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ABSTRACT
Direction-of-arrival (DOA) estimation in the presence of mu-
tual coupling and coherent signals is a hard task for arbitrary
sensor arrays including uniform circular array (UCA). While
the coherent sources can be resolved using spatial smooth-
ing algorithms for uniform linear and rectangular arrays, it
cannot be applied to UCA. In this paper, a new technique is
proposed for DOA estimation in UCA using a single snap-
shot. Joint-sparse recovery algorithm is proposed where the
source signal spatial directions and coupling coefficients are
embedded into a joint-sparse signal. A dictionary is defined
according to restricted isometry and compressed sensing is
employed for both DOA and coupling coefficient estimation.
It is shown that the proposed method performs better than the
alternative sparse recovery techniques.

Index Terms— Compressed sensing, Joint-sparse recov-
ery, Mutual coupling, Multipath, DOA estimation, Uniform
circular array.

1. INTRODUCTION

In direction finding (DF) applications, mutual coupling (MC)
among the antennas in the array is an important source of
error that should be corrected. Coupling effect depends on
both antenna type and array geometry. If the antennas in
the array are omni-directional, then MC is direction inde-
pendent and the same for all source directions. The array
structure is another factor that should be taken into account
in order to model the MC among the antennas. Different
MC matrix structures are modelled for different array geome-
tries i.e., Uniform linear arrays (ULA), Uniform circular ar-
rays (UCA) [1] and Uniform rectangular arrays (URA) [2].
There are several works on Direction-of-arrival (DOA) esti-
mation with unknown MC [3], [4], [5], however limited num-
ber of previous works for the DF scenario where the sources
are fully coherent and the signals are corrupted with mutual
coupling [6], [7], [8], [9]. When the source signals are co-
herent, the array covariance matrix is rank-deficient. In or-
der to overcome this problem, spatial smoothing approaches
are proposed for ULA [10] and URA [11]. In [7] and [8],

ESPRIT-Like approaches are proposed to estimate the DOA’s
of coherent sources in the presence of MC using URA and
ULA respectively. In [8], parallel-ULA geometry is used
for coherent source localization in case of MC where spa-
tial smoothing [10] and ESPRIT methods are utilized. Maxi-
mum likelihood estimation is proposed to estimate the coher-
ent source DOA’s in [9] using ULA structure. In [12] and [4],
convex minimization methods are proposed for DOA estima-
tion in case of MC with ULA. In [13], single snapshot DOA
estimation problem is solved using a sparse recovery algo-
rithm without considering the effect of MC. In [14], array in-
terpolation and ESPRIT algorithm are used to estimate the
source DOA for UCA while the source signals are assumed
to be independent. In [15], rank reduction and Root-MUSIC
approach is proposed for the DOA estimation of independent
sources under MC.

Spatial smoothing except array interpolation [16] cannot
be used for arrays such as UCA. While array interpolation is
effective in ideal conditions, it cannot be applied under non-
linearities and array imperfections.

In this paper, we consider the DF problem for UCA
where the source signals are fully coherent and corrupted by
both antenna couplings and external noise. DOA estimation
problem is solved using a joint-sparse recovery algorithm in
compressed sensing (CS) framework [17] where the unknown
spatial directions of the sources and the MC coefficients are
jointly embedded into a sparse signal. In order to recover the
joint-sparse signal, circulant structure of MC matrix is uti-
lized and a new overcomplete dictionary space is constructed.
Then convex minimization techniques are used to recover
both the signal support set and MC coefficients as well as the
source DOA angles.

2. SIGNAL MODEL AND PROBLEM
FORMULATION

The DOA estimation problem is considered where there are
K narrowband source signals impinging on M -element UCA
from far-field. The array output can be written as follows

y(t) = CĀs̄(t) + e(t) , t = 1, . . . , E (1)
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where E is the number of snapshots, e(t) is zero-mean,
spatially and temporarily white, Gaussian additive noise.
s̄(t) = [s1(t), s2(t), . . . , sK(t)]T is a K×1 vector composed
of coherent source signals, which are related to each other as,
sk(t) = βklsl(t), k, l = 1, . . . ,K where k 6= l and βkl is
a complex number. Ā is M × K array steering matrix and
defined as

Ā = [a(Θ̄1), a(Θ̄2), . . . , a(Θ̄K)] (2)

where Θ̄k = (φ̄k, θ̄k) represents the azimuth and elevation
angle of the kth source direction respectively. The mth ele-
ment of the array steering vector a(Θ̄k) is given as

am(Θ̄k) = exp

{
j

2π

λ
rT pm

}
(3)

where r = [cos(φ̄k) sin(θ̄k) sin(φ̄k) sin(θ̄k) cos(θ̄k)]T , λ is
the wavelength and pm = [xm ym zm]T is the mth antenna
position. C ∈ CM×M is the mutual coupling matrix which
is direction independent, symmetric and circulant [1]. C can
be structured as C = T (c̄) for Toeplitz operation T (·) and
circulant vector c̄ which is defined as

c̄ =

{
[c1, c2, . . . , cM−1

2
, cM−1

2
−1

, . . . , c2]T ,M is odd

[c1, c2, . . . , cM
2
, cM

2
+1

, cM
2
, cM

2
−1

, . . . , c2]T ,M is even

(4)
where {cm}M̄m=1 are the coupling coefficients. M̄ is the num-
ber of distinct coupling coefficients and M̄ ∈

{
M−1

2 , M2 + 1
}

for M is even or odd.
The aim is to find the source DOA’s {Θ̄k}Kk=1 and the

coupling coefficient vector c = [c1, c2, . . . , cM̄ ]T given that
the array output y(t) for a single snapshot.

3. JOINT-SPARSE RECOVERY OF SUPPORT SET
AND MC MATRIX

The conventional CS theory addresses the following problem

min
x∈RN

||x||0 s.t. y = Ax (5)

where y ∈ CM is the measurement vector, x ∈ R N is K-
sparse signal, namely, all entries of x but K are zero. A ∈
CM×N is the dictionary matrix where N � M . ||x||0 =
|{i : xi 6= 0}| denotes the number of nonzero elements of
x, namely, the supports of x. The support set is defined as
Sx = {xi : xi 6= 0}.

3.1. Estimation of Signal Support Set

Since we consider only a single snapshot, time index in (1) is
removed and we have the following measurement vector

y = CĀs̄ + e. (6)

Above expression can be written in the CS context for noise-
free case as

y = CAs (7)

where s is N ×1K-sparse vector and A is M ×N dictionary
matrix defined as

A = [a(Θ1), a(Θ2), . . . , a(ΘN )] (8)

where Θi = (φi, θ) and the dictionary resolution in azimuth
plane is |φi − φi+1| = ∆φ, i = 1, . . . , N − 1 and elevation
θ = π

2 is selected for simplicity. In order to find the support
set Ss and C with CS, the following minimization problem
can be considered

min
s∈RN ,C∈CM×M

||s||0 s.t. y = CAs. (9)

Above problem is non-convex and NP-hard. In order to recast
(9) into linear form, s and coupling coefficients c are embed-
ded into a joint-sparse vector. A new dictionary is defined
using the circulant structure of C.

First, we state the MC matrix, C, in the following form,

C =

M̄∑
m=1

cmIm (10)

where Im is M ×M matrix whose (i, j)th entry is given as

Im(i, j) =

{
1 , if C(i, j) = cm
0 , otherwise

(11)

where m = 1, 2, . . . , M̄ . Now we can define the new M ×
M̄N dictionary matrix D by stacking the former dictionary
matrix A as

D = [I1A, I2A, . . . , IM̄A]. (12)

Then (9) can be written in the following form, i.e.,

min
x∈C M̄N

||x||0 s.t. y = Dx (13)

where x = [sT , c2sT , c3sT , . . . , cM̄ sT ]T for the first coupling
coefficient c1 = 1 is assumed which is usually the case in
practical applications [1]. If (13) is solved, K-sparse signal s
can be recovered as the first N entries of M̄K-sparse signal
x. Note that the special structure of x is used in the following
part of this paper.

The restricted isometry property for joint-sparse case (JS-
RIP) is investigated in [18, 19] for 2K-sparse signals. In this
study, M̄K-sparse signal x is said to be K-joint sparse if
||x||0,1 = K where ||· ||0,1 denotes the joint-sparsity which
is defined explicitly as

||x||0,1 = |{i : x
(m)
i 6= 0}|, m = 1, . . . , M̄ (14)

where x(m)
i is the ith entry of the mth block of x.

Definition. The dictionary D is said to obey JS-RIP with
sparsity levelK, if there exists δK ∈ [0, 1) for all joint-sparse
(M̄K-sparse) signal x ∈ C M̄N such that

(1− δK)||x||22 ≤ ||Dx||22 ≤ (1 + δK)||x||22 (15)
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holds for δK which can be found as [20],

min
δK∈[0,1)

δK s.t.(1− δK)||x||22 ≤ ||Dx||22 ≤ (1 + δK)||x||22. (16)

Theorem 1. Let ŝ and ĉ be the solution to problem in (13)
where the optimal solutions are s? and c? respectively. If the
matrix D obeys JS-RIP with δ2K < 1, then the solution is
unique.

Proof: If x̂ is the solution to (13) with

x̂ = [̂sT , ĉ2ŝT , ĉ3ŝT , . . . , ĉM̄ ŝT ]T , (17)

we can say that ||x̂||0,1 ≤ ||x?||0,1 ≤ K since both x̂ and x?
are the solution. Using the triangle inequality, the difference
is bounded by 2K as

||x? − x̂||0,1 ≤ 2K. (18)

Since, both x̂ and x? solves (13) with equality constraint, then,
y = Dx̂ = Dx? which results D(x? − x̂) = 0. We can use
(18) in JS-RIP as follows

(1− δ2K)||x? − x̂||22 ≤ ||D(x? − x̂)||22 = 0. (19)

Then we can see that ||x? − x̂||22 = 0 since δ2K < 1 which
concludes the proof.

When the observation y is noisy, i.e., y = CAs + e where
the noise power is bounded by ||e||22 ≤ ε2, the constrained
CS problem in (13) can be formulated with an inequality con-
straint with respect to ε2. Furthermore, mixed l2,1-norm can
be utilized to relax the minimization problem and ease the
computational burden. The final form of the joint-sparse re-
covery problem can be given as

min
x∈C M̄N

||x||2,1 s.t. ||Dx− y||22 ≤ ε2 (20)

where the residual is bounded by ε = σN

√
M + η

√
2M

[21]. η is an adjustable parameter which controls the noise
power ||e||22. The mixed l2,1-norm is defined as

||x||2,1 =

N∑
i=1

 M̄∑
m=1

|xN(m−1)+i|2
1/2

(21)

which can explicitly be given as

||x||2,1 =

N∑
i=1

 M̄∑
m=1

|cmsi|2
1/2

. (22)

Using Lagrangian approach, (20) can be written as

min
x∈C M̄N

ζ||x||2,1 +
1

2
||Dx− y||22 (23)

where ζ is the penalty term which determines the trade-off
between l2,1/l2-normed terms in the problem. A choice for ζ
is ζ = σN

√
2log(K) where σN is the noise standard devia-

tion [22].

3.2. Estimation of MC coefficients

Once the convex problem in (23) is solved, the coupling co-
efficients can be found as cm = xN(m−1)+i/si for m =
1, . . . , M̄ and i ∈ Ix which is the set of indices of Sx. It
is a suboptimum method for finding MC coefficients since
there exist K many solutions of cm, for i ∈ Ix. We can find
{cm}M̄m=1 by first solving (13) for x and obtain s, then use
Least-square solution of the following cost function for c

J(c) = ||y−
M̄∑
m=1

cmImAs||22

= yHy− yH
M̄∑

m1=1

cm1
Im1

As

−
M̄∑

m2=1

c∗m2
sHAHIHm2

y

+

M̄∑
m1=1

M̄∑
m2=1

cm1c
∗
m2

sHAHIHm2
Im1As. (24)

Taking derivative of J(c) with respect to c∗m2
, we obtain the

following expression, i.e.,

∂J(c)

∂c∗m2

= −
M̄∑

m2=1

sHAHIHm2
y

+

M̄∑
m1=1

M̄∑
m2=1

cm1
sHAHIHm2

Im1
As = 0. (25)

This expression is written in the following form,

M̄∑
m1=1

M̄∑
m2=1

cm1sHAHIHm2
Im1As =

M̄∑
m2=1

sHAHIHm2
y. (26)

Above equation can be expressed as a linear set of equations

Acc = bc (27)

where the elements of Ac ∈ C M̄×M̄ and bc ∈ C M̄ are found
as

Ac(m2,m1) = sHAHIHm2
Im1As

bc(m2) = sHAHIHm2
y. (28)

Now we can find the MC coefficients as c = A−1
c bc and con-

struct c̄ in (4).

4. SIMULATION RESULTS

In this section, the performance of the proposed algorithm is
compared with Orthogonal Matching Pursuit (OMP) [23] and
Basis Pursuit De-noising (BPDN) [22]. The measurement
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Fig. 1. Succes rate performance vs SNR.

−10 −5 0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

SNR, dB

R
M

S
E

 D
O

A

 

 

Proposed

BPDN

OMP

Fig. 2. DOA estimation performance vs SNR.

y is generated from UCA composed of M = 16 antennas
with λ/2 array spacing. Three coherent sources are lo-
cated in (32◦, 90◦), (51◦, 90◦) and (75◦, 90◦) respectively.
The MC coefficients are selected as c = [1.0000, 0.4935 +
j0.3031, 0.3541 + j0.2264, 0.3658 + j0.2033, 0.3112 +
j0.1277, 0.2927 + j0.0941, 0.2628 + j0.0808, 0.2584 +
j0.0936, 0.2395 + j0.0858]T for all simulations. The dic-
tionary matrix, A is generated with ∆φ = 1◦ resolution.
Then D is constructed according to (12) and D is used for the
proposed approach whereas A is used for OMP and BPDN
algorithms. In order to estimate s with the proposed aproach,
the problem in (23) is solved for ζ = 1 using convex prob-
lem solver cvx in MATLAB. The MC coefficients, c, are
estimated using (27). The simulations are run for J = 500
Monte-Carlo trials and Root-mean-square error (RMSE) for

−10 −5 0 5 10 15 20 25 30
10

−1

10
0

SNR, dB

R
M

S
E

 M
C

 

 

Proposed

BPDN

OMP

Fig. 3. RMSE for the MC coefficients vs SNR.

DOA angles and MC coefficients are computed as

RMSEDOA =
√

1
KJ

∑K
k=1

∑J
j=1 |φ̂k,j − φ̄k,j |2

RMSEMC =
√

1
M̄J

∑M̄
m=1

∑J
j=1 |ĉm,j − c?m,j |2.

In Fig. 1, the probability of perfect reconstruction of the
support set for the proposed algorithm is compared with the
alternative methods. As it is seen, the proposed algorithm
reaches the best success rate when SNR≥ 15dB, whereas the
other algorithms are not able to achieve this rate. This is due
to the fact that the MC coefficients corrupt the array data so
that the support set cannot be recovered exactly by the alter-
native methods. Since A is not structured for MC coefficients,
OMP and BPDN algorithms perform as if there is a bias due
to the coupling coefficients.

DOA estimation performance is evaluated in Fig. 2. The
proposed method achieves the best performance for a very
large range of SNR values. While BPDN algorithm does
not achieve the perfect support recovery, its DOA error is
approximately 2.3◦ for SNR≥5dB whereas OMP gives ap-
proximately 10◦ error for the simulated SNR range and its
performance does not improve. In Fig. 3, RMSE for the cou-
pling coefficients are given. As it is seen that the proposed
approach outperforms the other algorithms.

5. CONCLUSIONS

In this paper, DOA estimation problem is considered for co-
herent sources in case of mutual coupling in a UCA when
there is only a single snapshot. A joint-sparse recovery al-
gorithm is proposed to estimate both source DOA angles and
MC coefficients. A new dictionary is defined in CS frame-
work using joint-sparse RIP. It is shown that the proposed ap-
proach recovers source DOA angles and MC coefficients with
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high accuracy.
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