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ABSTRACT

In this paper, we relax the modeling assumptions under which
Bayesian filtering is tractable. In order to restore tractabil-
ity, we adopt the stabilizing forgetting (SF) operator, which
replaces the explicit time evolution model of Bayesian fil-
tering. The principal contribution of the paper is to define
a rich class of conditional observation models for which re-
cursive, invariant, finite-dimensional statistics result from SF-
based Bayesian filtering. We specialize the result to the mix-
ture Kalman filter, verifying that the exact solution is avail-
able in this case. This allows us to consider the quality of
the SF-based approximate solution. Finally, we assess SF-
based tracking of the time-varying rate parameter (state) in
data modelled as a mixture of exponential components.

Index Terms— Approximate Bayesian filtering, stabi-
lized forgetting, exponential family, mixture Kalman filter,
exponential mixture

1. INTRODUCTION: BAYESIAN FILTERING

Bayesian filtering (BF) refers to the task of sequential infer-
ence, f(¥,|Xn),n = 1,2, .., of state variables, ?,,, given
observations, X ,,. The update from any n — 1 to n involves
two steps:

e The time step:

F@ X 1) = /f(tpn\wn_nf(wn_l|Xn_1>d¢n_1

(1)
n > 2, where the state evolution model, f(v,,|¥,,_1), is
defined, here, under the first-order Markov property.

e The data step:

@l Xn) o flan|$,)f (@, Xn-1), ()

n > 1, where the observation model, f(z,|v,,), is
assumed here to be conditionally independent, known
and time-invariant, given 1,,, and where the prior is
f(1]Xo) = f(¢y).
The widely known and adopted exact BF solution is the
Kalman Filter (KF). Since the KF assumptions are too re-
strictive in practice (Gaussianity, linearity, and known pa-
rameters), it is necessary to relax the assumptions and seek
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approximations in practice [1-3]. A large research literature
has been assembled on deterministic and stochastic approx-
imations for BF in specific modelling contexts, and, indeed,
combinations of both types of approximation can achieve
good compromises between computational load and accu-
racy [4-6]. Among the key findings is that deterministic
approaches may achieve greater accuracy than particle fil-
tering (PF) techniques (and related sequential Monte Carlo
approaches) for a fixed computational expenditure [7]. How-
ever, deterministic approximations such as variational Bayes
(VB) [4] are local approximations, and so the inferential error
cannot be bounded in the long-run. Uniquely, the empirical
approximation that underlies PF is a global approximation,
and so this error is bounded [4]. In this paper, we focus on
stabilized forgetting (SF) as a local approximation in BF, and
examine the efficient, recursive statistical computations that
can be achieved for a rich class of models in this case.

In Section 1.1, we review the SF operator (local approxi-
mation) as a general technique for approximate sequential in-
ference of non-stationary parameters, in the case where there
is no explicit parameter evolution model, and we specialize
this to the case of BF. In section 2, we present the main re-
sult of the paper as a lemma, proposing a rich class of models
for which BF remains tractable under the SF operator. In sec-
tion 3, we define the mixture KF (MKF) and verify that an
exact BF solution is available in this case. This allows us
to bench-mark the performance of the SF-approximated so-
lution against the exact solution in this case, via simulations.
In section 4, we examine a mixture of exponential models
with time-variant rates. This practical context—though una-
menable to exact computation—is one for which the results
of our main lemma hold. We consider the performance of
the SF solution for this model in simulation. Discussion and
conclusions follow in Section 5.

1.1. Stabilized forgetting

When there is no explicit form of state-evolution model (1),
then interleaving a forgetting operator with the Bayes opera-
tor is quite natural [8]. We emphasize SF because of the at-
tractive trade-offs it can offer between computational load and
accuracy. Furthermore, SF has recently been justified as an
essential step in sequential local approximation [9]. Finally,
SF can be derived as an optimal approximation within the full
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probabilistic design (FPD) framework [10]. The Bayesian in-
terpretation of SF was studied in [7,8, 11].

In analogy to BF, the SF solution, (| X, \,), is achieved
via two steps: (a) The time step, where (1) is approximated
by j?(z/Jn|Xn,17 An), as follows:

f() € arg mgin A Dg(bn] X))l f (-1 X n—1) g, ]+
+(1 - AH)D[Q(Q/}H‘XTI,—I)I‘f(w7L|X7L—1)}}

where, 0 < A, < 1 is the known forgetting factor at time
n [7] and
9(¥)

Dlg|lf) = /w () (2 yay 4

f(h)

is the Kullback-Leibler divergence (KLD) [7] from g to f.
Also, f(1n|X,_1) is the alternative distribution in which
prior knowledge about the states can also be updated; and
f(.)w, denotes the replacement of the argument of f(.) with
1. posterior distribution. Then, the time step of BF (1) is
replaced by (3) [11], whose form is

F Wl X1, 00) 0 [ (1| Xm1 ), ¥ Fln] X )
(b) The data step (2) is then

f(wn|Xn; /\n) X f(xn|¢n)f(wn|Xn—la /\n)

2. THE MIXTURE OF EXPONENTIAL FAMILY
OBSERVATION MODEL

In this section, we aim to relax significantly the restrictive as-
sumptions of the observation model in KF, in such a way that
the SF solution is tractable, while the KF solution is no longer
available. Recall that the SF solution is computed without an
explicit state evolution model. Tractability of SF is defined
next.

Definition 2.1 (Tractable SF ). The SF solution is tractable
if the filtering distribution, f(¢n|X n, An), can be recursively
updated via finite, fixed-dimensional, non- sufficient statistics,
which can be computed by an invariant algorithm.

The following lemma provides us with a sufficient condi-
tion (set of observation models) for which the SF solution can
be computed tractably.

Lemma 2.1. A sufficient condition for tractable SF is that the
observation model be in the form

f(@n|Yon, p) = ap(Pn)bp(@n) exp[{dp(vn), hp(zn))]

n=12..andp=1,....,p, (5)

where ay(.) and by(.) are p-conditional known, scalar ker-
nels, {.,.) is a known two-argument scalar operator which
is distributive across addition in its second argument, and
&p(.) , hyp(.) are p-conditional known kernels with compati-
ble dimensions. p is an unknown time-invariant index (model
pointer) with p,, states.
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Proof. Under the conditions of the lemma, each p-indexed
component is a member of the exponential family (EF), and
therefore possesses a conjugate (CEF) distribution that is in-
variant under Bayes’ rule [7]. Let us consider the CEF distri-
bution and its alternative, at time n—1, for the pth component:

f(¢n71|p7 anl) = f(¢n71|p7 Snfl)
5(P) -
o ap" " (1) exp[{pp (), Vi)

where S,,_1 = (f/n_l, Up—1), and

(6)

F(nlps Sucr) o i () explip (), VO]

where S,_; = (Vﬁ)h 17,(1@1)-
effected as

f(¢n|p, Xn—la )\n) = f(¢n|p7 Sn—h Sn—h )\n)
=(p)

The time step of SF can be

a7 () expl(op(n), V)] (D
where 77(p) (7 (p) i7(p)
anpn—l = /\”LVngl + (1 - )‘n)vngl
’77(172171 = )‘nﬁr(f—)l +(1— )‘n)ﬂr(fl
Therefore, the data step of SF is effected as
f(Wnlp, Xn, An) = f(nlp, Sny An)
-(P) ~
ocay® (1n) expl(dp(vn), V)] ®)
where,
Vo = V() 9)
7 = l’fffi_l +1 (10)
Adopting the uniform prior distribution for p,
1
PT{L:p}: 77p: 1""7pu7
then the posterior distribution of p is given by
aP) = Pr(L=p|z,,\)
C(p) (f/n(zv)7 I;T(lp))
- ,p=1...pu (1D

Pu

d) xr(d) ~(d
b (720, 72%)

where Q(ﬁ) (.) is the (available) normalizing constant of the
recovered p-conditioned CEF form (8). Finally, the filtering
distribution can be computed by marginalizing over p and us-
ing the chain rule:

Pu
f(wanna )\n) = Z f(%z\l% X, )\n) PI‘(L = p|Xna )‘n)
p=1
Pu . )
s 3 aPap () expligy (), V)]
p=1
(12)
O]
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Remark 2.2. If p, = 1in (5), then the lemma specializes to
the exponential family observation model, for which the SF
BF solution follows from (8):

FWn] X0, An) o< @™ (¥) exp[(¢(¥n), Vi)

with

Vo = ~n|n—1 + h(xﬂ)

Un = Vp|n—1 +1

3. THE MIXTURE KALMAN FILTER

In this section, we present an extension of the KF model con-
straints for which BF remains tractable. This mixture KF
(MKF) model involves a time-invariant index into one of p,,
conditional observation models, each of which satisfies the
KF observation model constraints. Hence, (13) is specialized
to

F@n|tn, p) = Ny, (CPp,,, rP)) (13)

where C’T(L ,r;((p ), n = 1,2,--- are known scalars. Recall
that an explicit state evolution model (it may also be indexed
by p) is adopted by the KF, as follows:

f("/}nhbnfl) = Ny, (Anwnfhrw) (14)

where A, 7y, n = 1,2, .- are known scalars. Therefore,
the p-conditional BF updates are of the KF type:

f@nlp, X)) o Ny, (uP,

a\P)?) (15)
where,

C(p)(T¢+A (10)2)

() = A nIn_1
My = Appin—1 + { }
07(1;0)2(70 + An 7(L )1) + ,r,(P)

Jzn —CP A4, ] (16)

C(p)2(r + An Opn— 1) }
2 2
O(P) (ry + A20 7(11?)1) + Tgp)
a7
Using the insight of (12), we can write down the MKF solu-
tion (15) as follows:

oP? = (ry + Ao P{1 -

f(n]X0) Z a(p) Ny, (1 (P) T(LP)Q)
where,
(p)2
w__ 9%
a - b p - 17 R 7pu
n w _(d)2
Z:l On )

Remark 3.1 (Kalman filter). When p,, = 1, MKF collapses to
the exact KF. The exact KF solution can be similarly obtained

from (15)-(17).
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We can derive the SF solution for the MKF context by
replacing the state evolution model (14) with the forgetting
operator . We call this solution the mixture SF (MSF), and
aim to compareit against the exact MKF solution. We con-
sider the conditional observation model (5) to be univariate

normal with known variance r(p ).

F(@n|n, p) = Nu (bn,r®), n=1,2,...  (18)

Therefore, using (7) and (8), the SF solution at time n is con-
jugate normal as,

F(Wnlp, X, An) = Ny, (P, 59)?) (19)

Replacing hy(z,) in (9) with [z, 1)7[z, 1], ;) can
be updated. Also, we partition V,¥) € R2*2 (the extended
information matrix [7]) into blocks as

Ve = | , (20)

which accumulates data. Using (20), the shaping parameters
can be computed as follows:

7 (p) (p)
P Vo 21 52 — %
Vn 22 Vn,p22

Therefore, substituting (19) into (12), the SF solution in this
special case is attained as follows:

Pu
FWnl Xy An) o< @ Ny, (AP, 5%)
p=1
where,
~(p)2
~ On
O‘ELp) = Py ~(d)2° p 17' s Pu
d=19n

Further specialization of (5) can be considered when p,, =
1 in (18). The resulting SF solution is attained similarly, as
follows:

J(n| X n, An) o Ny, (fn s &?L)

3.1. Simulation study

We examine the performance of the MSF solution against
the exact MKF solution. Once again, in MSF, there is
no explicit state evolution model, while the Gaussian dis-
tribution is adopted as the state evolution model in MKF.
Firstly, we compare KF solution versus SF solution in Fig-
ure 2. Here, the results are attained in 1000 Monte Carlo
runs. Figure 1 shows the performance of the exact KF
solution versus the SF solution (with three values of for-
getting factor A = 0.7,0.8,0.9) in the Gaussian case, with
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Reconstruction of true signal using KF versus SF in normal case

35
upper bound
3 EF solution, 3=0.7
a5k~ <~ -EF solution, 2=0.8 h

— - EF solution, 2=0.9
2| — & - KF solution
— % -True state

lower bound

Fig. 1. State reconstruction using SF versus KF in normal case
T =1,7ry =1

r. = ry = 1, and considering diffuse prior i; = 0, 67 = 1.
Figure 1 shows reconstruction of ,. It is clear that the
exact KF solution performs best in tracking v, (red ),
while the SF solution with A = 0.9 also performs well.
This is because the variation of state ry is small (slowly
time-varying). The upper and lower Bayesian interval,
[E(n] X n) —v/Var(¥n| X n), E(¢n] X n)++/var (| X )],
around the SF solution with A = 0.9 is also displayed. Fig-
ure 2 illustrates the performance of the MKF solution versus
MSF solution in the Gaussian case with ry = 2, p, = 5
and C®) = {1.2,1.4,1.6,1.8,2}. Here, observations are
generated from N(¢,,2) and the state evolution model is
N(2¢,,_1,1). Also diffuse prior fi; = 0, 67 = 1 is consid-
ered. MSF with the highest A\ performs best. This is because
the state is again slow-varying, and so minimal forgetting
(large M) best matches the data in this case. Nevertheless,
most of inferred state trajectories remain inside the standard
interval for all tested values of \.

Reconstruction of true signal using MKF vs MSF in normal case

upper bound
— & --MKF
— - True state
MSF, A=0.7
< -MSF, A=0.8
—B---M3F A=0.9
loweer bound

. . . . h | ’ 1 .
2 4 3 8 10 12 14 16 18 20
Time

Fig. 2. State reconstruction using MKF vs MSF (normal case).

2764

4. EXPONENTIAL MIXTURE WITH
TIME-VARIANT RATE

We now investigate the exponential observation model as a
special case of the (5). It models, for example, the inter-arrival
times of particles released by a fixed mass of a radio-isotope,
known to be one of p,, possible species (p = 1,...,p,):

F(@nlton,p) Z Exp(P)), 2n >0, $P) >0

ap(n) = p(Yn) = wr(Lp)v

Here, cid denotes ‘conditionally independently distributed’,

7(1’)) is the time-varying rate parameter of the exponential ob-
servation model for the p'" species, and a,(.) and ¢,(.) are
the exponential family kernels (5). The CEF distribution (6)

at time n — 1 is Ga(ﬁr(fi) 1> f/n('i )1), and the alternative distri-

bution is also chosen as Ga(.). Therefore using (8), the SF
solution is

F@nlp, Xy An) o [P expl (P, VP)] @1)

hyp(zn) = Tn.

n(p) _ V(P) ) + 2z

nln—
szp) = Dﬁﬁl—l +1
Furthermore, substituting (21) into (12), the MSF solution can
be deduced as

Pu
Fn| X M) o D (&P [P expl(w®), VP)]}
p=1

~(p)

where &y, is obtained by substituting the normalizing con-
~ ~ (P .
stant, ([ (Vi", 030) = 500 ineo (1),

4.1. Simulation study

Figures 3 and 4 illustrate the reconstruction of the true state,
1n, using the SF solution in the case of slow- and fast-varying

state variables, respectively. In Figure 3, f(In(v,,)|1In(v,—1)) ~

N(0,0.5), for which larger A is chosen. On the other hand,
in Figure 4, f(In(vy,)|1In(¢n—1)) ~ N(0,2) for which small
A is selected. We infer (reconstruct) the state using A = 0.9
in the former case, and using A = 0.2 in the latter case. Once
again, the true state trajectory is dominantly contained within
the inferred Bayesian interval estimate of the state.

5. DISCUSSION

Lemma 2.1 remains true for a time-variant forgetting factor,
An, and there is interest in the design of a schedule for A,
in this case. In particular, a sequential, data-driven assign-
ment rule, \,, = A(X,_1) is of interest, and several pro-
posals are available in the Bayesian literature [9, 12]. In this
paper, we have confined our attention to fixed-A forgetting,
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SF solution for exponential observation model in the case of slow varying state
T T T T

upper first 5D
— % -True state

55l — b~ EF solution, A=0.9
3 lowrer first 5D

25 I I I I L I I L L

Fig. 3. State reconstruction using SF for the exponential ob-
servation model in the slowly-varying state case.

SF solution for exponential ohservation model in the case of fast varying state

65+

upper first 30
— % -True state

— - EF solution, #=0.2 ||
lowrer first S0

Bl

251

Fig. 4. State reconstruction using SF for the exponential ob-
servation model in the fast-varying state case.

and have noted the dependence of the optimal choice on the
bandwidth of the state. Nevertheless, the state inference typ-
ically remains within the standard interval of the optimal A
for a range of these forgetting factors. The results in this pa-
per highlight the elegant and computationally efficient recur-
sive computations that are preserved by SF for a rich class
of models, achieving good performance. Indeed, it provides
an attractive trade-off between accuracy and computational
load, potentially favourably in comparison to Monte Carlo-
based techniques such as PF. In addition to the application in
Section 4, Lemma 2.1 can also be applied to certain signal-
dependent-noise problems [13]. It can also be applied to the
problem described in [14], where the user of a wireless chan-
nel is drawn from p, possible users, and where z/},(lp ) is the
time-variant capacity, indexed by the active (pth) user.

The lemma does not claim to provide a necessary con-
dition for tractability of SF-approximated Bayesian filtering,
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and, indeed, we have explored further extensions to time-
variant parameter models for which tractability is preserved.
This work will be reported in future publications.
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