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ABSTRACT 
 

In this paper, a study is carried out for detecting North 

Atlantic Right Whale upcalls with measurements from 

passive acoustic monitoring devices. Preprocessed spec-

trograms of upcalls are subjected to two different tasks, 

one of which is based on extraction of time-frequency 

features from upcall contours, and the other that employs 

a Local Binary Pattern operator to extract salient texture 

features of the upcalls. Then several classifiers are used to 

evaluate the effectiveness of both the contour-based and 

texture-based features for upcall detection. Detection 

results reveal that popular classifiers such as Linear Dis-

criminant Analysis, Support Vector Machine, and 

TreeBagger can achieve high detection rates. Furthermore, 

using LBP features for call detection shows improved 

accuracy of about 3% to 4% over time-frequency features 

when an identical classifier is used. 

 

Index Terms— North Atlantic Right Whale, Local 

Binary Patterns, Spectral Denoising, Upcall Detection. 

 

1. INTRODUCTION 

 

Noth Atlantic Right Whale (NARW) is one of the critical-

ly endangered whales as the decline in its population is 

not compensated with its low birth rate [1]. It is recorded 

that some 300-500 individuals remain off the east coast of 

North America [2]. Therefore, it is important to be able to 

detect the presence of such animals in high-risk areas in 

order that mitigation measures protecting them from such 

damages as collision with ships may be activated. Passive 

acoustic methods have been shown to be the most effec-

tive mechanisms for determining whale presence in criti-

cal habitats [4].  Upcalls are narrow-band frequency-

modulated chirps in the 50-250Hz frequency band pro-

duced by NARW for long-range communication [3]. 

The detection of NARW upcalls has attracted re-

searchers in the field of bioacoustics since these species 

are highly endangered and automatic detection systems 

have to be developed in order to find right whale calls 

amidst other marine mammal vocalizations. Mellinger [5] 

compared the performance of spectrogram correlation and 

neural network methods. The former uses an optimization 

program to find the synthetic kernel that best correlates to 

a sample space of 20 right whale upcalls. The latter meth-

od trains weights of a NN via backpropagation on 9/10 of 

the test dataset. The neural network performed better, 

achieving an error rate of less than 6%. Munger et.al [6] 

also used spectrogram cross-correlation with a synthetic 

kernel [7] for automatically detecting right whales using 

the software program Ishmael [8]. Despite the high num-

ber of false detections and missed individual calls, 

Munger's spectrogram cross-correlation helped a human 

analyst identify segments of data that contained right 

whale calls with high probability. Gillespie [9] construct-

ed a two-stage detector where the vocalization outlines are 

extracted from a smoothed spectrogram using an edge 

detection method. In the second stage, parameters meas-

ured from time-frequency contours are fed into a classifier 

to determine the sounds associated with right whales. The 

problem was also addressed by Urazghildiiev et.al [10] 

who used a generalized likelihood ratio test (GLRT) de-

tector of polynomial-phase signals with unknown ampli-

tude and polynomial coefficients observed in the presence 

of locally stationary Gaussian noise. The closed form 

representation for a minimal sufficient statistic was de-

rived and a realizable detection scheme was developed. 

The performance was shown to be superior to other detec-

tion techniques. Urazghildiiev and Clark [11] designed an 

automatic detector for a passive acoustic NARW monitor-

ing system that determines the time of signals’ occurrence 

but a human operator makes the final decision after spec-

trogram inspection of the marked areas. 

In this paper, we propose two new texture-based tech-

niques for NARW upcall detection. The first method per-

forms elaborate pre-processing in order to isolate a spec-

trogram contour associated with an upcall and drives time-

frequency parameters from the contour to use feature 

vectors for classification. The second approach applies the 

Local Binary Pattern (LBP) operator on a region of inter-

est in the spectrogram to capture important texture fea-

tures. Finally, both types of features are fed to classifiers 

and detection results are evaluated. 

 

2. PROPOSED FEATURE EXTRACTION 

ALGORITHMS 

 

Both procedures for NARW upcall detection proposed in 

this section consist of several steps to extract either con-

tour features or texture features for the purpose of upcall 

detection. 

 

2.1. Contour-based approach 
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Spectrograms were obtained of NARW upcalls 

in two-second clips at a sampling rate of 2000 Hz

data were segmented into 80% of overlapping frames of 

128 ms duration (frequency resolution of 7.8 Hz

Hanning windowed with no zero padding. In the first step, 

the spectrogram is normalized to give: 
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where SN (t,f) and S(t,f) represent the normalized and ori

inal spectrograms, respectively. Also μi and 

mean and standard deviation calculated for each freque

cy band fi, respectively. Such normalization emphasizes

long-lasting narrowband noises made by ships, wind, 

electrical machineries enhancing the 

sounds such as upcalls. To reduce background noise and 

avoid extreme values, the spectrogram is equalized by 

hard-limiting the spectral upper and lower bound

plitudes as: 

( )( , ) max , min , ( , )H floor ceiling N floorS t f S S S t f S = − 
where Sfloor and Sceiling are the new lower and upper bounds 

of the normalized spectrogram. In another word, 

equalization algorithm renders the spectrogram values in 

the range between Sfloor and Sceiling.  

After spectrogram normalization and equalization, i

portant regions within the spectrogram have to be an

lyzed in order to find areas associated with 

upcalls. Equalized spectrogram is subsequently 

to a binary image, a process aimed at finding 

segments. Considering the fact that some upcalls might be 

very faint inside the background noise in the spectr

it is worthwhile to point out that a well

threshold has to be set in such a way that no 

are missed during the binarization process. The binary 

image obtained from the equalized spectrogram 

is given in top image of Fig. 2.  

The binary image shows many spurious contours r

maining as a result of the tradeoff of choosing a low 

threshold. Ranging from tiny to large, these contour

irrelevant clutter and must be separated from 

interest corresponding to the upcall contour.

end, an 8-connected neighborhood and Moore

tracing technique using Jacob's stopping criteria 

plied on the spectrogram to locate individual co

objects and trace their exterior boundaries as shown in the 

lower image of Fig. 2. Then a set of prope

perimeter (pixels), area (pixels), height (Hz) as

of frequency range, width (sec) measures the time dur

tion, is extracted from each object in the image for further 

processing. 

The parameters are used to make an initial decision

discard an object or keep it for further 

thresholds for each object are chosen to minimize the 

number of missed objects associated with an upcall.

objects are detected, the spectrogram contains no upcall 

regions and is labeled as non upcall. If there is one obje

detected, it is considered as a potential upcall and

to the second detection phase as depicted in 

 

NARW upcalls recorded 

sampling rate of 2000 Hz. The 

pping frames of 

frequency resolution of 7.8 Hz) and 

In the first step, 

( , ) 1,...,S t f for i N        (1) 

) represent the normalized and orig-

and σi are the 

standard deviation calculated for each frequen-

Such normalization emphasizes 

es made by ships, wind, and 

 short-duration 

ground noise and 

gram is equalized by 

and lower bounds of am-

( , ) max ,min , ( , )H floor ceiling N floorS t f S S S t f S = −       (2) 

the new lower and upper bounds 

of the normalized spectrogram. In another word, the 

equalization algorithm renders the spectrogram values in 

spectrogram normalization and equalization, im-

portant regions within the spectrogram have to be ana-

lyzed in order to find areas associated with NARW 

subsequently converted 

finding continuous 

ing the fact that some upcalls might be 

very faint inside the background noise in the spectrogram, 

it is worthwhile to point out that a well-chosen low 

threshold has to be set in such a way that no target objects 

e binarization process. The binary 

equalized spectrogram of Fig. 1 

many spurious contours re-

choosing a low 

y to large, these contours are 

must be separated from the object of 

interest corresponding to the upcall contour. Toward that 

Moore-Neighbor 

ing technique using Jacob's stopping criteria are ap-

on the spectrogram to locate individual continuous 

objects and trace their exterior boundaries as shown in the 

. Then a set of properties such as 

a (pixels), height (Hz) as a measure 

measures the time dura-

extracted from each object in the image for further 

initial decision to 

 analysis. The 

to minimize the 

missed objects associated with an upcall. If no 

the spectrogram contains no upcall 

here is one object 

potential upcall and passed 

as depicted in Fig. 3. 

Fig. 1. Original, normalized and equalized spectrograms

Fig. 2. Spectrogram after binarization and object detection

 

 
Original, normalized and equalized spectrograms 

 

Spectrogram after binarization and object detection 
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The first stage of detection categorizes the audio 

segments in which no objects are found 

upcall" class. Any signal segment which does not belong 

to the ‘non-upcall” class is fed to the second stage to d

termine if there is an upcall in the segment. 

feature vector has to be computed for all objects consi

ered as potential upcalls. For this purpose, a set of features 

named "TFP-2 features" are extracted from detected o

jects. These features are: minimum frequen

imum frequency (Hz), frequency band (Hz), perimeter 

(pixels), area (pixels), orientation (degree) and time dur

tion (sec). 

 

2.2. Texture based approach 
 

Most of the upcalls in our data set have been observed to 

occur within the frequency range of 80 Hz and 320Hz, 

respectively. Hence, the first step of preprocessing in this 

approach involves a band-pass filter that limits the  fr

quency range of NARW calls. The next step which is 

similar to that of the first method is to run normalization 

and equalization algorithms on the spectrogram 

enhance the upcalls and remove clutter. 

A 3x3 median filter is applied to the resulting image

to smooth the spectrogram and enhance the contour edges

Fig. 4 shows the spectrogram before and after median 

filtering. This is followed by hard-thresholding of the 

pixels at 70% of the maximum intensity of the spectr

gram. Since the pixels along the upcall contour are e

pected to have high intensities, this approach

Fig. 3. The outputs of preprocessing steps and first stage detector 

leading to potential upcall decision 

detection categorizes the audio signal 

found into the "non-

. Any signal segment which does not belong 

upcall” class is fed to the second stage to de-

 At this point, a 

for all objects consid-

, a set of features 

2 features" are extracted from detected ob-

ncy (Hz), max-

imum frequency (Hz), frequency band (Hz), perimeter 

(pixels), area (pixels), orientation (degree) and time dura-

Most of the upcalls in our data set have been observed to 

80 Hz and 320Hz, 

step of preprocessing in this 

that limits the  fre-

. The next step which is 

is to run normalization 

and equalization algorithms on the spectrogram in order to 

the resulting image 

to smooth the spectrogram and enhance the contour edges. 

shows the spectrogram before and after median 

thresholding of the 

70% of the maximum intensity of the spectro-

gram. Since the pixels along the upcall contour are ex-

pected to have high intensities, this approach is capable of 

finding locations in the spectrogram where the probability 

of an upcall presence is very high. Then,

spectrogram are detected by the technique de

Section 2.1 which keeps only those objects 

larger than a threshold value for feature extraction as 

illustrated in the bottom spectrogram of 

LBP is a feature extraction method which is capable of 

describing texture patterns in the image

upcall in the image, the LBP operator scans the 

spectrogram using a circular 8-point neighborhood of 

radius 1 yielding to the LBP image as depicted in

image of Fig. 5. It is evident from the image that the 

upcall in the bottom image of Fig. 4 is preserved after 

LBP operation. Feature vectors are subsequently derived 

from the LBP histogram, as depicted in the bottom image 

of Fig. 5, following the method described in [12].

Fig. 4. Original spectrogram (top), output of median filter (mi

dle), and output of high-intensity region selection (bottom)

 

3. DETECTION RESULTS
 

The effectiveness of the features described in the previous 

section is evaluated for NARW upcall detection 

various popular classifiers. In the training phase, 4000 

right whale audio segments are utilized

1265 NARW upcalls and 2735 non-

the classification methods for upcall detection are applied 

preprocessing steps and first stage detector 

in the spectrogram where the probability 

Then, all objects in the 

spectrogram are detected by the technique described in 

only those objects with intensity 

for feature extraction as 

bottom spectrogram of Fig. 4. 

LBP is a feature extraction method which is capable of 

patterns in the image [12]. To detect an 

upcall in the image, the LBP operator scans the entire 

point neighborhood of 

image as depicted in the top 

. It is evident from the image that the 

is preserved after the 

Feature vectors are subsequently derived 

, as depicted in the bottom image 

5, following the method described in [12]. 

Original spectrogram (top), output of median filter (mid-

intensity region selection (bottom) 

RESULTS 

features described in the previous 

NARW upcall detection with 

. In the training phase, 4000 

are utilized, in which there are 

-upcalls. In addition, 

the classification methods for upcall detection are applied 
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on 3000 NARW audio segments in which there

upcalls and 2301 non-upcalls In this section, three diffe

ent detection rates are used to analyze detection 

number of correctly classified calls
Overaldetection rate

total number of calls
=

number of correctly classified upcalls
Upcalldetection rate

total number of upcalls
=

number of correctly classified non-upcalls
Non-upcall detection rate

total number of non-upcalls
=

 

Upcall 

detection 

rate (%) 

Non-upcall 

detection 

rate (%) 

LDA 80.11 95.21 

QDA 67.38 92.78 

KNN 63.23 95.74 

Decision Tree 31.18 98.52 

Linear SVM 70.81 97.08 

TreeBagger 76.25 95.83 

   Table 1. Detection results using TFP-2

 

Table 1 shows the detection results obtained from

classifiers using TFP-2 features. It is observed that the 

highest rate of correct detection is achieved by Linear 

Discriminant Analysis (LDA) 80% corresponding to 560 

upcalls followed by TreeBagger (533 upcalls)

SVM (495 upcalls). Although Decision Tree performance 

is very poor in detection of NARW upcalls followed by 

KNN but the best non-upcall detection rate is achieved by 

Decision Tree 98.5% (2267 non-upcalls) and

97% (2234 non-upcalls). The last column also reveals 

LDA, Treebagger, and Linear SVM with 91.7%, 91.27%, 

Fig. 5. LBP image (top), LBP histogram (bottom)

in which there are 699 

In this section, three differ-

ent detection rates are used to analyze detection results: 

number of correctly classified calls               (3) 

number of correctly classified upcalls            (4) 

number of correctly classified non-upcalls

total number of non-upcalls
     (5) 

Overall 

detection 

rate (%) 

91.7 

86.87 

88 

83.97 

90.97 

91.27 

2 features 

obtained from various 

2 features. It is observed that the 

of correct detection is achieved by Linear 

corresponding to 560 

(533 upcalls) and Linear 

. Although Decision Tree performance 

is very poor in detection of NARW upcalls followed by 

upcall detection rate is achieved by 

and Linear SVM 

. The last column also reveals that 

LDA, Treebagger, and Linear SVM with 91.7%, 91.27%, 

and 90.97%, respectively, demonstrate

es in terms of overall detection accuracy. 

the entire classification results, the Receiver Operating 

Characteristics (ROC) curves which are the plot of true 

positive rate (correctly classified upcall) against false 

positive rate (non-upcall classified as upcall) are shown 

for all scenarios in Fig. 6. The closer the ROC curve fo

lows the vertical axis and then the top border of the 

the more accurate the classifier is. The above conclusion 

is also proven since LDA, Treebagger, and Linear SVM 

curves, respectively, tend to achieve high true positive 

low false positive. Therefore, the area under the

curves is greater than others.  

 

Upcall 

detection 

rate (%) 

Non-upcall 

detection 

rate (%)

LDA 72.96 97.82

QDA 78.40 94.44

KNN 78.97 95.35

Decision Tree 57.79 90.65

Linear SVM 90.41 93.44

TreeBagger 89.98 93.48

    Table 2. Detection results using

Detection results are given in Table 2 using LBP features. 

In terms of best upcall detection rate, Linear SVM with 

90.41% accuracy (632 upcalls) outperforms the other 

classifiers followed by TreeBagger with 89.98% accuracy 

(629 upcalls). On the other hand, LDA is cable of obtai

ing 98% accuracy in non-upcall detection corresponding 

to 2251 upcalls. It is also interesting that although KNN is 

a very simple classifier but it can achieve a high non

upcall detection rate (95%) while keeping the upcall d

tection rate acceptably high (79%). The best detection 

performance is achieved by Linear SVM, TreeBagger, and 

LBP image (top), LBP histogram (bottom) 

Fig. 6. ROC plot of different classifiers using TFP

demonstrate better performanc-

in terms of overall detection accuracy. To summarize 

the entire classification results, the Receiver Operating 

hich are the plot of true 

positive rate (correctly classified upcall) against false 

upcall classified as upcall) are shown 

. The closer the ROC curve fol-

lows the vertical axis and then the top border of the Fig., 

The above conclusion 

, Treebagger, and Linear SVM 

tend to achieve high true positive and 

area under these ROC 

upcall 

detection 

(%) 

Overall 

detection 

rate (%) 

97.82 92.03 

94.44 90.70 

35 91.53 

90.65 83 

93.44 92.73 

93.48 92.67 

using LBP features 

Detection results are given in Table 2 using LBP features. 

In terms of best upcall detection rate, Linear SVM with 

90.41% accuracy (632 upcalls) outperforms the other 

classifiers followed by TreeBagger with 89.98% accuracy 

(629 upcalls). On the other hand, LDA is cable of obtain-

upcall detection corresponding 

to 2251 upcalls. It is also interesting that although KNN is 

a very simple classifier but it can achieve a high non-

upcall detection rate (95%) while keeping the upcall de-

tection rate acceptably high (79%). The best detection 

performance is achieved by Linear SVM, TreeBagger, and 

ROC plot of different classifiers using TFP-2 features 
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LDA with accuracy of around 92-93%. For the overall 

comparison of classifiers tested with LBP features, their 

ROC curves are plotted in Fig. 7 confirming the

claim since these three classifiers have the 

under the curve. Comparing ROC curves in 

Fig. 7 reveals that classifiers with LBP features have 

gained about 3% to 4% accuracy improvement over TFP

2 features with an identical classifier.  

 

4. CONCLUSION 

 

Features of NARW upcalls were extracted 

contour and texture based algorithms. Various classi

such as LDA, SVM, and Tree bagger are paired with these 

feature extractors and their detection results are analyzed. 

Considering TFP-2 features, the detector that acquired the 

highest accuracy ~ 91% is TreeBagger since this approach 

creates an ensemble of decision trees where every tree is 

grown on an independently drawn bootstrap replica of 

input data. On the other hand, LDA is observed to detect 

the highest number of upcalls and linear SVM demo

strates the least false negative rate. With only LBP fe

tures, LDA, linear SVM, and Tree Bagger are

high-ranked detectors with accuracies close to 93%. It 

seems that LBP features exhibit linear characteristics that 

discriminant analysis and SVM with linear kernels can 

well distinguish upcalls in the dataset. The largest percent 

of upcall detection (true positive) belong to linear SVM 

and on the other hand, LDA produces the least number of 

non-upcall misclassifications. An important observa

that switching from TFP-2 features to LBP features pr

duces considerably high detection rate with

tested which once again indicate highly-informative pro

erty of the LBP features. 

 

Fig. 7. ROC plot of different classifiers using LBP fe

For the overall 

BP features, their 

confirming the above 

have the largest area 

Comparing ROC curves in Fig. 6 and 

reveals that classifiers with LBP features have 

4% accuracy improvement over TFP-

were extracted using both 

Various classifiers 

paired with these 

results are analyzed. 

2 features, the detector that acquired the 

highest accuracy ~ 91% is TreeBagger since this approach 

creates an ensemble of decision trees where every tree is 

bootstrap replica of 

. On the other hand, LDA is observed to detect 

the highest number of upcalls and linear SVM demon-

strates the least false negative rate. With only LBP fea-

tures, LDA, linear SVM, and Tree Bagger are amongst the 

ranked detectors with accuracies close to 93%. It 

seems that LBP features exhibit linear characteristics that 

discriminant analysis and SVM with linear kernels can 

well distinguish upcalls in the dataset. The largest percent 

ection (true positive) belong to linear SVM 

the least number of 

important observation is 

2 features to LBP features pro-

with all classifiers 

informative prop-
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