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ABSTRACT

A formulation of the hypothesised filter for independent
stochastic populations (HISP) is proposed, based on the con-
cept of association measure, which is a measure on the set
of observation histories. Using this formulation, a particle
approximation is introduced at the level of the association
measure for handling the exponential growth in the number
of underlying hypotheses. This approximation is combined
with a sequential Monte Carlo implementation for the un-
derlying single-object distributions to form a mixed particle
association model. Finally, the performance of this approach
is compared against a Kalman filter implementation on simu-
lated data based on a finite-resolution sensor.

Index Terms— Multi-object filtering; finite-resolution
sensor.

1. INTRODUCTION

The hypothesised filter for independent stochastic populations
[1], or HISP filter, is a recent solution in the domain of
multi-object estimation that naturally provides track estimates
through the modelling of distinguishable information, while
displaying a low algorithmic complexity. When non-linearity
and/or non-Gaussianity has to be modelled, sequential Monte
Carlo (SMC) methods need to be considered [2, 3, 4]. In this
paper, we show that the HISP filter allows for a clustering-free
SMC implementation which maintains the performance of the
Kalman filter implementation in linear and Gaussian cases.
This approach, in the continuation of [5], bears some similar-
ity with [6], where an association-measure approximation of
the probability hypothesis density filter [7] is derived.

Simulations are performed with a finite-resolution sensor
which models more faithfully the output of real sensors. This
type of sensor are best modelled by using probability theory
which is why this formalism is used throughout this article1.
Let M(E) (resp. P(E)) stand for the set of finite measures
(resp. probability measures) on a given measurable space
(E, E). For any bounded measurable function f on E and for

1See [8] for an introduction to measure theory in the context of multi-
object estimation.

any measure γ ∈M(E), we write γ(f) =
∫
f(x)γ(dx). Let

G : E → (0,∞) be a bounded measurable function and let
the Boltzmann-Gibbs transformation ΨG : M(E) → P(E)
be defined as2

ΨG(γ)(dx)
∫
=

1

γ(G)
G(x)γ(dx),

where it is assumed that γ(G) > 0. Note that if G is a like-
lihood function and γ is a probability measure then ΨG(γ) is
the corresponding Bayes’ posterior law.

2. PROBLEM STATEMENT AND MODELLING

We consider the problem of the estimation of the number and
state of individuals in a random and time-varying population,
given a sequence of noisy, incomplete and corrupted collec-
tions of observations provided by a finite-resolution sensor.
The fact that the collections of observations are incomplete is
due to the uncertain detection of the individuals, and the fact
that they are corrupted is a consequence of the combination of
sensor-related noise and of the presence of other individuals
that are not part of the population under consideration.

Some parts of the population modelling will be sensor de-
pendent so that we start by introducing the considered model
for the sensor before focusing on the population itself. With-
out loss of generality, the time is indexed by the set T .

= N.

2.1. Sensor modelling

We consider a finite-resolution sensor acting, at time t ∈ T,
in the space Zt which is assumed to be a closed subset of an
Euclidean space. The observations are assumed to be Borel
subsets of the observation space Zt. These subsets correspond
to the resolution cells of the sensor that form a partition πt of
Zt, i.e., it holds that if A,A′ ∈ πt then either A = A′ or
A ∩ A′ = ∅. To each resolution cell A ∈ πt is associated a
unique index z, and the set of all these indices is denoted Z ′t.
At every time t ∈ T, a family {Azt }z∈Zt of observations in
Zt indexed by a set Zt ⊆ Z ′t is made available by the sensor.

2For any µ, µ′ ∈ M(E), the equality µ(dx)
∫
= µ′(dx) refers to:

µ(f) = µ′(f) for any bounded measurable function f on (E, E).
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It is assumed that each observation does not correspond to
more than one individual, so that, if two individuals have their
projection on Zt in the same resolution cell, then only one of
them can be detected at the same time.

In order to have a complete model of the observation,
we consider the empty observation φ which corresponds to
individuals that have not been detected. The space Zt and
the set Zt are accordingly extended to Z̄t

.
= Zt ∪ {φ} and

Z̄t
.
= Zt ∪ {φ} at any time t ∈ T.

2.2. Population modelling

We assume that there exists a space in which all the individ-
uals of interest can be uniquely characterised so that a popu-
lation can be understood as being a set of individuals. More
details about this approach can be found in [1].

State

Individuals in the population of interest are described at time
t ∈ T by their respective state in the individual state space Xt,
which is assumed to be a closed subset of an Euclidean space.
As for the observation space, we define X̄t as the extension
of the state space Xt with an empty state ψ which models the
individuals that are not part of the population at time t, but
which will interact in some way with it at some time t′ ≥ t.
Examples of such interactions are: a) individuals that are to
be born at some later time, and b) objects/phenomena that are
not part of the population of interest but might interfere in the
observation process via the creation of spurious observations.

In order to describe the population as a whole, we intro-
duce different ways of indexing laws that might describe indi-
viduals of interest. We start with individuals that have already
been detected once and can therefore be distinguished by their
observation history, or observation path. At time t ∈ T, the
set of all possible observation paths can be indexed by the set
Ȳt

.
= Z̄0 × . . . × Z̄t. This set also contains the empty obser-

vation path φt
.
= (φ, . . . , φ) ∈ Ȳt and we only consider the

set Yt
.
= Ȳt \ {φt} for individuals that have been detected at

least once. The symbol “m” is used to refer to these measured
individuals. An interval of existence T ⊆ T of the form [t′, t]
is conveniently added to the characterisation of individuals.

As far as the undetected individuals are concerned, we
assume for the sake of simplicity that they are detected upon
appearance and refer to them via the symbol “a”. They are
also assumed to be indistinguishable, meaning that there is no
specific information available on any of them, so that they are
all described by the same law. It is assumed that the number of
appearing individuals is driven by a binomial distribution with
parameters at ∈ [0, 1] and n′t

.
= |Z ′t|. The spatial distribution

of each of these individuals is denoted p(a)
t ∈ P(X̄t) and

verifies p(a)
t ({ψ}) = 0.

The objects/phenomena that interfere with the observa-
tion process, which we now refer to as spurious-observation

generators, are associated with the symbol “[” and are almost
surely at point ψ, so that the distribution p([)

t
.
= δψ is associ-

ated to them. The individuals in the population of interest are
accordingly given the symbol “]”.

We are now in position to build a full index set in which
each individual in the extended population, i.e., the one con-
taining the objective population and the spurious-observation
generators, is given a unique index. Before the observation
update at time t, this index set is defined as

It
.
= Imt ∪ {iat , i[t},

where, denoting “[·, t]” the abstract time interval ending at
time t, Imt

.
= {(], [·, t], y) : y ∈ Yt−1} corresponds to the de-

tected individuals, where iat
.
= (], {t},φt) describes newborn

individuals, where the spurious-observation generators index
is i[t

.
= ([, ∅,φt).

Focusing on the individuals in the objective population
that have been distinguished, i.e., the ones with index in Imt ,
we define the measure γt on X̄t × Imt as

γt(d(x, i))
∫
= αt(di)p

(i)
t (dx). (1)

The measure αt on Imt is referred to as an association measure
[9, 6, 5], and characterises the probability for a law p(i)

t with
a given index i = (], T, y), where y is an observation path, to
represent an individual in the objective population.

Observation

We first introduce the sub-σ-algebra At ⊂ B(Zt) generated
by the countable measurable partition πt and its extended
counterpart Āt on the space Z̄t. Events in Āt are exactly
the ones that we are interested in since they describe all the
possible outputs of the observation process. The observation
of the measured individuals in the objective population can
then be described concisely at time t ∈ T by a single Markov
kernel Lm

t on X̄t × Āt defined as follows: for any x ∈ Xt

and any A ∈ At:

a) Lm
t (x,A) gives the probability for an object that has

state x to be detected in the Borel set A,

b) Lm
t (x, {φ}) gives the probability for the detection of an

object that has state x to fail.

We also assume that Lm
t (ψ, {φ}) = 1 since individuals in

the objective population that are not yet in the scene cannot
trigger an observation, i.e., Lm

t (ψ,A) = 0 for any A ∈ At.
A collection of likelihoods need to be defined for the

spurious-observation generators: let {Lzt }z∈Z′
t

be a collec-
tion of Markov kernels on {ψ} × Āt such that Lzt (ψ,Az) is
the probability of finding a spurious observation in Az and

Lzt (ψ,Az ∪ {φ}) = 1, ∀z ∈ Z ′t.
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In this work, we consider that appearing individuals are
almost surely detected, so that no estimation of the undetected
individuals is required. This assumption implies that the ker-
nel Lm

t cannot be used for appearing individuals. We thus
introduce another Markov kernel La

t on X̄t × Āt such that
La
t (x, {φ}) = 0, which is defined as

La
t (x,A) =

Lm
t (x,A)

Lm
t (x,Zt)

, ∀A ∈ At,

if Lm
t (x,Zt) 6= 0 and as La

t (x, ·) = 0 otherwise.
Overall, when updating a population described by the in-

dex set It, the following correspondence is used: Lm
t is used

to update individuals in Imt , Lzt is used for individuals with
index i[t, and La

t is used for appearing individuals.

Motion

The motion of individuals from time t ∈ T to time t + 1 is
characterised by a Markov kernel Mt from X̄t to X̄t+1 such
that, for any x ∈ Xt and any Borel set B ∈ B(Xt+1):

a) Mt(x,B) gives the probability for an object that had
state x at time t to persist to time t+ 1 and to be in B,

b) Mt(x, {ψ}) gives the probability for an object that had
state x at time t to disappear from the scene,

We also assume that Mt(ψ, {ψ}) = 1, which can be seen
as a modelling choice implying that disappeared individu-
als cannot enter the scene again. It also holds that spurious-
observation generators cannot move away from state ψ since
they will never be part of the objective population.

3. PARTICLE ASSOCIATION MEASURE

We first express the HISP filter [1] as a function of its asso-
ciation measure, before devising approximations based on
this concept. Some additional notations are required: for any
j = (s, T, y) ∈ It and any z ∈ Z̄t, the index (s, T, (y, z)) ∈ It
will be denoted j ·z. Also, introduce ϕ as an additional empty
observation corresponding to the case where the underlying
association path does not represent an actual object, and
define the measures It and Zt as

It
.
=
∑
i∈It

δi, and Zt
.
=
∑
z∈Zt

δz.

The measures Imt , I]t are defined as restrictions of It to Imt
and I]t respectively. Similarly, Z̄t and Z̃t are defined as exten-
sions of Zt to Z̄t and Z̃t

.
= Z̄t ∪ {ϕ} respectively. We also

define the index set

It,t
.
= {(i,m, z)|i ∈ Imt , z ∈ Z̃t}

∪ {(ia, a, z)|z ∈ Z̃t} ∪ {(i[t, z, z)|z ∈ Z ′t},

which indicates which likelihood should be used with which
particular combination of predicted indices and observations.

Proposition 1. The measure γt+1 ∈M(X̄t+1 × Imt+1) which
characterises the predicted hypotheses at time t+ 1 is:

γt+1(d(x, i))
∫
= αt+1(di)p(i)

t+1(dx)

where, introducing (j, s, z) ∈ It,t such that i = j · z, the
predicted law p(i)

t+1 is characterised by

p(i)
t+1(B) = ΨLst (·,Azt )

(
p(j)
t

)
(Mt(·, B)), ∀B ∈ B(X̄t+1),

and where the association measure αt can be expressed, for
any (j, z) ∈ I]t × Zt, as

αt+1(d(j · z)) ∫= Zt(dz)
I]t (dj)wex(j, z)w(j,z)

t∫
It(dk)wex(k, z)w

(k,z)
t

(2)

or, for any (j, z) ∈ Imt × Z̄t, as

αt+1(d(j · z)) ∫= Imt (dj)
Z̄t(dz)wex(j, z)w(j,z)

t∫
Z̃t(dz′)wex(j, z′)w

(j,z′)
t

(3)

where, extending αt to I]t by adding the term atδiat ,

w
(j,z)
t =

{
αt({j})p(j)

t (Lst (·, Azt )) if z ∈ Z̄t
1− αt({j}) if z = ϕ.

The termwex(j, z) ∈ [0, 1] is the probability for all the in-
dividuals except (the) one with index j to be associated with
the observations in Zt \ {z}, i.e., wex assesses the compat-
ibility between the time-predicted law and the collection of
observations excluding the/an individual with index j and the
observation z. The expression of wex has not been detailed
here, but its calculation would be computationally demanding
when performed exactly [1]. To reduce this cost, the follow-
ing sparsity-type assumption is considered for subsets I and
Z of the sets Imt and Zt respectively.(
S(I, Z)

)
∀j ∈ I, ∀z, z′ ∈ Z, w

(j,z)
t w

(j,z′)
t ≈ 0.

Assuming S(I, Z) is equivalent to considering that two
observations in Z are unlikely to be identified with the same
individual representation in I . Using this assumption on
particular subsets of Imt and Zt, the weight wex can be re-
expressed as follows.

Proposition 2. For any (j, z) ∈ It × Z̄t, the term wex(j, z)
factorises when assuming S

(
Imt \ {j}, Zt \ {z}

)
as

wex(j, z) ≈ C ′t(j, z)
∏

k∈ Imt \{j}

[
w

(k,φ)
t +

∑
z′∈Zt\{z}

w
(k,z′)
t

Ca,[
t (z′)

]

where, denoting “a” and “[” the indices iat and i[t,

Ca,[
t (z) =

w(a,z)
t

w(a,φ)

t

+
w([,z)
t

w([,φ)

t

,

C ′t(j, z) =

[
w(a,φ)

t w([,φ)

t

]n′
t[

w(a,φ)

t

]1a(j)[
w([,φ)

t

]1[(j)
[ ∏
z∈Zt\{z}

Ca,[
t (z)

]
.
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The approximation of wex brings the complexity down to
linear in the number of observation and in the number of hy-
potheses. Yet, this means that the number of hypotheses will
still be multiplied by the number of observations at each time
step, quickly leading to an unmanageable number of them.
In order to introduce an empirical-measure approximation of
the association measure αt, an expression of it as a process
composed of a mass and a probability measure needs to be
introduced, as described in [9, Sect. 6.4]. First, the recursive
expressions (2) and (3) of αt can be expressed in a more con-
cise way as

αt+1(d(j · z)) ∫=
(
αt ⊗ Z̄t

)(
d(j, z)

)
w(γt)

ex (j, z)p(j)
t

(
F (j,z)
t,γt

)
,

(4)
where the potential function F (j,z)

t,γ is defined, for any obser-
vation z in Z̄t and any measure γ in M(X̄t × Imt ), as

F (j,z)
t,γ (x)

.
=


Lst (x,A

z
t )∫

It(dk)w(γ)
ex (k, z)w

(k,z)
t

if z ∈ Zt

Lst (x, φ)∫
Z̃t(dz′)w(γ)

ex (j, z′)w
(j,z′)
t

if z = φ,

where (j, s, z) ∈ It,t and where the dependency of wex on
the considered measure γ, from which the terms w(j,z)

t can
be recovered, is underlined through the use of a superscript.
Defining, for any t ∈ T, the probability measure βt ∈ P(Imt )
as the normalised association measure at time t and At ∈ R+

as the total mass in αt, i.e.,At
.
= αt(Imt ) and βt

.
= αt/At, the

recursion (4) for the association measure αt can be translated
into a recursion for the normalised association measure βt as

βt+1 = Πt(At, βt),

where Πt describes the update of βt and is such that

Πt : R+ ×P(Imt )→ P(Imt+1)

(A, β) 7→ ΨGA,β (β ⊗ Z̄t),

where the potential function GA,β is defined as

GA,β(j, z)
.
= w(µ)

ex (j, z)p(j)
t

(
F (j,z)
t,µ

)
, ∀j ∈ Imt ,∀z ∈ Z̄t,

with µ = Aβ
(
p(·)
t

)
. Describing the recursion of the asso-

ciation measure through the transformation of a probability
measure allows for considering recursive approximations as
follows: The normalised version ηt+1 ∈ P(X̄t+1 × Imt+1) of
γt+1 is approximated by

ηNt+1(d(x, i))
∫
= βNt+1(di)p(i)

t+1(dx),

where βNt+1 is an empirical measure based on N i.i.d. random
variables with common law Πt(At, β

N
t ), and it appears that

ηNt+1 ≈
N↑∞

ηt+1.
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Fig. 1: Trajectories and observations with (20m, 4◦) cells.

This approximation allows for managing the number of prop-
agated hypotheses. Yet, several of these hypotheses might
be statistically close and bring a limited diversity to the esti-
mation; they should therefore be dealt with. As there is no
statistical distance between empirical measures that are suffi-
ciently well behaved for the purpose, a way of detecting close
hypotheses has to be devised. The first step is to analyse the
properties of the single-object filter which explain statistical
similarity between two posterior laws, that is: a) the stabil-
ity, which refers to the reduced effect of past observations on
the current distribution, and b) the robustness, which relates
to the fact that a small change in the observation path only
induces small modifications of the distribution. For instance,
if a distance d is available for observations in Z̄t′ at any time
t′ ∈ T, then an example of distance on observation paths up
to time t ∈ T would take the form

d(y, y′) =
∑
t′≤t

exp
(
− c(t− t′)

)
d
(
yt′ , y

′
t′
)
,

where c ∈ R+ is a coefficient that controls the duration re-
quired for the effect of large deviations of observations to be-
come negligible. The fact that d is a distance follows directly.

4. SIMULATION RESULTS

We consider a finite-resolution range-bearing sensor with
range between 20 and 500 meters in two different configura-
tions for the resolution cells, with a cell size of (5m, 1◦), and
of (20m, 4◦). The sensor is located at the centre of the coordi-
nate system. Observations are acquired synchronously every
0.1s and are generated as follows: each object is assumed to
have an extension modelled by a Gaussian of standard devi-
ation 2m in each direction, is detected with probability 0.8,
and the corresponding resolution cell is selected randomly
according to the amount of probability mass that is induced
in each cell by the Gaussian distribution modelling the exten-
sion. An average of 5 spurious observations is triggered at
each time step.
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Fig. 2: Accumulated observations and trajectory of an object
with different cell sizes.
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Fig. 3: OSPA distance over 25 time steps, averaged over 100
Monte Carlo runs.

There are 10 objects in the field of view of the sensor
evolving in the 2-dimensional Cartesian plane, with trajec-
tories as shown in Figure 1. The motion model of these ob-
jects is described by a known and constant turn of ω = 1/5
with a Gaussian noise driven by a non-zero acceleration with
0 mean and standard deviation 10m.s−2. Figure 2 shows one
of the objects with the two different resolution-cell sizes in
the background.

Two versions of the HISP filter are compared, one is the
proposed SMC implementation and the other is based on the
Kalman filter (KF). Since the considered observation model
cannot be used directly in a Kalman filter, we represent reso-
lution cells by a Gaussian centred on the cell and with a stan-
dard deviation equal to 1/4 of the size of the cell in each direc-
tion. For the SMC implementation, 2500 particles are used for
each hypothesis, and 20 particles are used for modelling the
extension. The same HISP parameters are used for both im-
plementations, with probability of disappearance of 1− 10−4

and an hypothesis confirmation threshold of 0.9.
Figure 3 compares the two implementations with different

cell sizes in terms of OSPA distance [10], which is the distance
between the multi-object estimate and the ground truth, with a
2-norm and a cutoff of 100. The performance of the two im-
plementation is similar, confirming that the SMC implemen-
tation does not bring down the efficiency while allowing for

more diverse types of models to be used. The SMC version
also have faster initialisation for larger resolution cells, but
tends to be less accurate in the longer term.

5. CONCLUSION

A mixed particle association model has been derived for the
HISP filter and demonstrated on a simulated scenario using a
finite-resolution sensor with various resolution-cell sizes. Un-
der these conditions, and using a linear motion model, it has
been shown to perform as well as a Kalman filter implemen-
tation thus showing the efficiency of the considered approach.
The choice of a finite-resolution sensor also demonstrates the
possibilities offered when using probability theory to model
events and uncertainties.
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