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Abstract—Image denoising is a fundamental problem in image
processing and many powerful algorithms have been developed.
However, they often rely on the knowledge of the noise distri-
bution and its parameters. We propose a fully blind denoising
method that first estimates the noise level function then uses this
estimation for automatic denoising. First we perform the non-
parametric detection of homogeneous image regions in order to
compute a scatterplot of the noise statistics, then we estimate the
noise level function with the least absolute deviation estimator.
The noise level function parameters are then directly re-injected
into an adaptive denoising algorithm based on the non-local
means with no prior model fitting. Results show the performance
of the noise estimation and denoising methods, and we provide
a robust blind denoising tool.

I. INTRODUCTION

Image denoising is widely studied in image processing.

Many powerful algorithms have been developed recently and

achieve outstanding results [1], [2]. However, they often rely

on the knowledge of the noise distribution and the noise level,

that are in most cases assumed to be known. We propose

a blind denoising algorithm that automatically estimates the

noise level function, i.e. the function of the noise variance with

respect to the image intensities, then re-injects the estimation

into a denoising algorithm without any model fitting.

Section II is dedicated to the automatic estimation of

spatially uncorrelated, signal-dependent noise from a single

image. Variance stabilizing transforms can reduce the de-

pendency between the signal intensity and the noise [3].

Separation techniques have also been extended to specific

signal-dependent models, e.g., using a wavelet transform for

a Poisson-Gaussian model [4] or using a Gaussian mixture

model of patches for additive noise with polynomial variance

[5]. The noise can also be distinguished from the signal com-

ponents by principal component analysis [6] or by selecting

blocks with lowest variance [7].

The approach that we follow here [8] relies on the fact

that natural images contain homogeneous areas, where the

signal to noise ratio is very weak, so only the statistics of the

noise intervene. While classic detectors require assumptions

on the noise statistics [9], [10], we propose a non-parametric

detection of homogeneous areas based on Kendall’s rank

correlation coefficient [11] that only requires the noise to

be spatially uncorrelated. Then we estimate the noise level

function (NLF), i.e., the function of the noise variance with

respect to the image intensities, as a second order polynomial

minimizing the ℓ1 error on the statistics of these regions.

Then in section III, we use the estimated noise level function

for blind denoising. We adapt an adaptive denoising algorithm

[12] that performs fast image denoising and is flexible for

different noise statistics. The proposed method relies only on

the estimated noise level function: the noise is approximated

by additive noise with polynomial variance and the denoising

algorithm is adapted accordingly.

In section IV, experiments and numerical results show the

validity of the proposed estimation and denoising methods, as

well as comparisons to the state-of-the-art. We also provide a

Matlab implementation for the automatic noise estimation and

its application to image and video denoising, that is available

for download at https://github.com/csutour/RNLF.

II. NOISE ESTIMATION

In this problem, we assume that the observed image g ∈
R

N , where N is the number of pixels of the image, is an
observation of a clean unknown image g0, corrupted by a
spatially uncorrelated signal dependent noise. Hence, g can
be modeled as the realization of a random vector G such that
E[G] = g0, and

Cov[G] =











NLF(g01) 0
NLF(g02)

. . .

0 NLF(g0N )











, (1)

where NLF : R → R
+ is coined the noise level function.

This model hence encompasses spatially uncorrelated, signal

dependent noise.

In order to estimate the unknown noise level function, we

rely on the fact that most natural images contain homogeneous

regions, i.e., areas where the underlying clean signal can

be assumed to be constant. In those regions, according to

eq. (1), the empirical expectation and variance should provide

a punctual estimation of the noise level function. Hence, we

seek to detect homogeneous regions with no access to the true

underlying signal g0 in order to get punctual estimations of

the noise level function. Then the NLF can be estimating by

fitting a second order polynomial function to the scatterplot.
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Figure 1. Detection of homogeneous areas in an image corrupted with hybrid noise as the sum of Gaussian, Poisson and multiplicative gamma noise
whose NLF parameters are (a, b, c) = (0.0312, 0.75, 400), resulting in an initial PSNR of 17.93dB. a) Noisy image (range [0, 255]), b) p-value (range
[black = 0,white = 1]) of the associated Kendall’s τ coefficient computed within blocks of size W = 16 × 16, and c) selected homogeneous blocks (red)
by thresholding the p-value to reach a probability of detection of PD = 1− PFA = 0.7, d) Estimation of the noise level function with the LAD estimator.

A. Detection of homogeneous areas

The goal is to develop a method that automatically selects

homogeneous regions in the image. It is important for such

technique not to make any assumption on the nature of the

noise. We therefore consider a non-parametric approach whose

statistical answer is independent of the noise model. The

key idea is that we focus mainly on the rank (i.e. on the

relative order) of the pixel values rather than on the values

themselves. If the ranking of the pixel values is uniformly

random or spatially uncorrelated, then this means that there is

no apparent structure in the considered zone.

1) Kendall’s τ coefficient: To measure the correlation of

the ranking, we rely on the Kendall’s τ coefficient. Kendall’s

τ coefficient is a rank correlation measure [11] that provides

a non-parametric hypothesis test for statistical dependence.

Let (x1, · · · , xn) and (y1, · · · , yn) be two sequences of n

observations of random variables X and Y .

Definition. Kendall’s τ ∈ [−1, 1] coefficient is defined as:

τ =
1

n(n− 1)

∑

1≤i,j≤n

sign(xi − xj) sign(yi − yj), (2)

assuming that, for all i 6= j, xi 6= xj and yi 6= yj . A value

τ = 0 indicates the absence of correlation between X and Y .

Distribution of τ . Under the null hypothesis of independence

of X and Y , the sampling distribution of τ has an expected

value of 0. In case of large samples, it is approximated by the

normal distribution [13]:

τ ∼ N

(
0,

2(2n+ 5)

9n(n− 1)

)
. (3)

In fact, it can be used for non-parametric tests as its dis-

tribution does not rely on any assumptions regarding the

distribution of X and Y .

Determining significance. The above coefficient indicates

whether the variables are likely to be dependent or not, and

its significance is based on the score, which is approximately

distributed along a standard normal distribution. The detec-

tion is performed by computing the associated p-value and

rejecting the null hypothesis if the p-value is smaller than a

predetermined significance level α, that corresponds to the

desired probability of detection.

2) Homogeneous detection: Kendall’s rank correlation co-

efficient is a non-parametric measure that assesses the statisti-

cal dependence between two variables, based on their relative

order. In the homogeneous detection problem, we need to

estimate whether the samples of a block gω of the image g

are independent and identically distributed, based on the fact

that if the area is homogeneous, then the ranking is spatially

uniform. To do so, we look at the statistical dependence

between pixels of a block gω by dividing the block in two

disjoint sequences gω1 = (gω2k) and gω2 = (gω2k+1) where gω2k
and gω2k+1 represent neighbor pixel values for a given scan

path. If these two variables are found to be independent, this

means that there is no relationship between the pixels of the

blocks and their neighbors, so we can assume that there is no

structure and all fluctuations are only due to noise.

We run K = 4 tests for horizontal, vertical and the two

diagonal neighbors and aggregate them to obtain a more

selective estimator. We consider the block to be homogeneous

if the test of independence for each direction is satisfied, i.e.

if each of the K obtained p-values pk reaches a given level

of significance α. By doing so, the overall level of detection

αeq after aggregation is no longer α but smaller and given by

αeq = P

(
K⋂

k=1

{pk > α}

)
. (4)

In order to control the overall level of detection αeq , we

empirically estimated offline the relation between αeq and α.

B. Model estimation

Once the mean/variance couples (m, s2) on uniform regions

are computed, a model that fits the observed NLF can be

estimated. The goal is to find the polynomial coefficients

(a, b, c) such that the vector of each estimated variance s2

can be represented as am2 + bm + c, where m contains the

estimated means. To do so, we use the least absolute deviation

estimator that minimizes a L1-norm, that is known to be more

robust to outliers (that might happen due to false homogeneous

detection) than the L2-norm. The problem is formulated as

follows:

̂(a, b, c) = argmin
a,b,c

‖am2 + bm+ c− s2‖1

= argmin
a,b,c

‖NLF(a,b,c)(m)− s2‖1. (5)

We can derive an iterative solution, using the preconditioned

primal-dual algorithm of Chambolle-Pock [14].
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a) Gaussian R-NL, b) Estimated R-NLF, c) True R-NLF,

PSNR = 23.66 PSNR = 28.29 PSNR = 28.31

Figure 2. Denoising of a hybrid noise with true parameters (a, b, c) =
(0.0312, 0.625, 100), initial PSNR = 20.34dB. The noisy image is displayed
on Fig. 1-a. a) Standard R-NL assuming Gaussian noise, b) R-NLF with the
estimated NLF and c) R-NLF with the true NLF.

III. DENOISING

Once the noise level function has been estimated, it can

be injected into the denoising process, based on the R-NL de-

noising algorithm [12]. This flexible algorithm allows efficient

denoising using solely the noise level function estimation.

A. R-NL: adaptive denoising algorithm

In previous work [12], we have combined the assumptions

of regularity and redundancy provided respectively by the

variational methods [15] and the non-local means [16].

1) NL-means: The non-local means algorithm is based

on the hypothesis of redundancy of structures inside natural

images. It performs a weighted average of pixels with similar

neighborhoods. For each pixel i in the image domain Ω, the

solution of the NL-means is:

uNL
i =

∑

j∈Ω

wi,jgj , (6)

where the weights wi,j ∈ [0, 1] select pixels j whose sur-

rounding patch ρj is similar to the patch ρi extracted around

the central pixel i:

wi,j =
1

Zi
exp

(
−
|d(gρi , gρj )−m

ρ
d|

s
ρ
d

)
. (7)

Zi is a normalization factor and d is a similarity function

that evaluates the similarity between patches according to the

noise distribution [17], while m
ρ
d and s

ρ
d are respectively the

mean and standard deviation of the dissimilarity d, evaluated

empirically on identically distributed noisy patches of size |ρ|.
If the NL-means offer an overall good performance, they

suffer from two opposite drawbacks: on the one hand they

might over-smooth low-contrasted areas due to the selection

of irrelevant candidates, while on the other hand they leave a

residual noise around edges and singular structures due to the

lack of redundancy. These two flaws are respectively referred

to as the jittering effect and the rare patch effect.

2) Adaptive regularization of the NL-means: In previous

work [12], we reduce these drawbacks in two steps.

Dejittering step: The jittering is due to an over-important

variance reduction that produces bias [18]. The proposed

method balances the bias-variance compromise by re-injecting

noisy data when denoising is irrelevant, i.e. when the variance

reduction is too high. We perform an adaptive convex com-

bination between the NL-means solution uNL and the noisy

image g for each each pixel i by:

Algorithm 1 R-NLF

Require: g: initial noisy image,

W : block size, αeq: probability of detection,

|ρ|: patch size, N : search window size,

γ: regularization parameter.

NLF estimation step

for each block gω do

for each direction k = 1..K do

Compute τ(gω1 , g
ω
2 )

Compute the p-value pωk
end for

if
⋂K

k=1{p
ω
k > α} then

Insert (mean(gω),Var(gω)) to (m, s2)
end if

end for

Estimate ̂(a, b, c) = argmin
a,b,c

‖NLF(a,b,c)(m)− s2‖1.

for i ∈ Ω do

NL-means step

Compute wi,j ←
1
Zi

exp
(
−

|d(gρi ,gρj )−mρ

d
|

sρ
d

)
, ∀j ∈ Ni

Compute uNL
i ←

∑
j wi,jgj

Compute (σ̂NL
i )2 ←

∑
j wi,jg

2
j − (uNL

i )2

Compute (σnoise
i )2 = a(uNL

i )2 + b(uNL
i ) + c

Dejittering step

Compute αi ←
|(σ̂NL

i )2−(σnoise
i )2|

|(σ̂NL

i
)2−(σnoise

i
)2|+(σnoise

i
)2

Update uNL
i ← (1− αi)u

NL
i + αigi

Update wi,j ← (1− αi)wi,j + αiδi,j

Compute λi ← γ
(∑

j w
2
i,j

)−1/2

end for

Minimization step

uR-NLF=argmin
u

∑

i∈Ω

λi

(
ui − uNL

i

)2

2NLF(a,b,c)(u
NL
i )

+TV(u)

return uR-NLF

uNLDJ
i = (1− αi)u

NL
i + αigi =

∑

j∈Ω

wNLDJ
i,j gj , (8)

where the weights wNLDJ
i,j = (1 − αi)w

NL
i,j + αiδi,j (δi,j is

Kronecker’s symbol) are in fact a readjustment of the initial

weights wNL
i,j , and αi is a jittering index given by:

αi =
|(σ̂NL

i )2 − (σnoise
i )2|

|(σ̂NL
i )2 − (σnoise

i )2|+ (σnoise
i )2

. (9)

(σnoise
i )2 refers to the noise variance, and (σ̂NL

i )2 is the

non local variance that reflects the variance of the selected

candidates in the weighted average. Besides, the residual

variance at pixel i of the dejittered solution uNLDJ is given

by:

(σ̂residual
i )2 =

[∑

j∈Ω

(wNLDJ
i,j )2

]
(σnoise

i )2. (10)
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The quantity
∑

j∈Ω(w
NLDJ
i,j )2 reflects the amount of noise that

has been removed from pixel i, providing a performance index.

Regularization step: The performance index (σ̂residual
i )2 is then

used to reduce the rare patch effect, through an adaptive

regularization based on a non-local data fidelity term and a

total variation (TV) regularization [15]:

uR-NL = argmin
u∈RN

∑

i∈Ω

λi

∑

j∈Ω

wi,j(gj − ui)
2 +TV(u)

= argmin
u∈RN

∑

i∈Ω

λi

(
ui − uNL

i

)2
+TV(u), (11)

where TV(u) =
∑

i∈Ω ‖(∇u)i‖, and λi is an adaptive

regularization parameter given by:

λi = γ

(
σ̂residual
i

σnoise
i

)−1

= γ

(∑

j∈Ω

w2
i,j

)−1/2

. (12)

B. R-NLF: blind denoising

Thanks to the good properties of the non-local means and

the variational methods, R-NL can readily be adopted to

different noise models, by adapting the similarity measure

between patches according to the noise statistics [17], as well

as the data fidelity term in the regularization process [12].

For blind denoising, we do not estimate a given model,

going through hypothesis tests, but we rather use directly the

estimated NLF parameters. For this purpose, we approximate

the noise by additive, signal-dependent Gaussian noise, with

second order polynomial variance, such that the noisy image

g is a realization of the random variable G given by:

G = f +NLF(a,b,c)(f) · ε, (13)

with NLF(a,b,c)(f) = af2 + bf + c and ε ∼ N (0, 1).
Then the R-NLF algorithm is derived from R-NL, taking

into account the signal dependence without direct knowledge

of the noise distribution, but only of the (â, b, c) parameters of

the estimated NLF. The dissimilarity measure d is then adapted

as follows:

d(gρi , gρj ) =
1

|ρ|

|ρ|∑

k=1

(
g
ρi

k − g
ρj

k

)2

NLF
(â,b,c)

(gρi

k ) + NLF
(â,b,c)

(g
ρj

k )
.

(14)

The dejittering step is straightforward; it relies on the

computation of the index αi, based on the non local variance(
σ̂NL
i

)2
and the noise variance

(
σnoise
i

)2
, computed as follows:

(
σnoise
i

)2
= NLF

(â,b,c)
(uNL

i ) = â(uNL
i )2 + b̂(uNL

i ) + ĉ. (15)

Finally, using the polynomial variance Gaussian model,

problem (11) becomes:

uR-NLF = argmin
u∈RN

∑

i∈Ω

λi

(
ui − uNL

i

)2

2NLF
(â,b,c)

(uNL
i )

+ TV(u). (16)

Similarly to the Gaussian case, this minimization problem is

then solved using the primal-dual algorithm [14]. The whole

blind denoising process is summarized in Algorithm 1.

Table I
MEAN RELATIVE ERROR (MRE) FOR POISSON-GAUSSIAN AND HYBRID

NOISE WITH THE GAUSSIAN-CAUCHY MIXTURE MODEL [4], THE PCA
METHOD [6], THE PERCENTILE METHOD [7], NOISE CLINIC [19], [20],

THE VST BASED METHOD [3] (ONLY AFFINE MODEL) AND OUR

ALGORITHM (AFFINE OR SECOND ORDER MODEL), AND PSNR AFTER

DENOISING WITH THE R-NLF ALGORITHM, USING THE ESTIMATED NLF.

Affine noise Affine noise Hybrid noise

Estimator MRE PSNR MRE PSNR MRE PSNR

Gaussian-Cauchy [4] 0.093 29.051 0.045 26.318 0.051 26.810
PCA [6] 0.219 28.324 0.873 24.127 0.454 23.923

Percentile [7] 0.084 28.994 0.117 26.072 0.148 26.057
Noise Clinic [19] 0.327 27.616 0.373 24.267 0.403 24.201

[20] \ 28.114 \ 25.009 \ 25.509
VST [3] 0.040 29.124 0.035 26.361 \ \

Prop. affine 0.078 29.062 0.057 26.308 \ \
Prop. hybrid 0.080 28.946 0.059 26.115 0.070 26.628
R-NLF (real) \ 29.159 \ 26.429 \ 26.766

Original Denoised

Figure 3. Blind denoising of night vision images acquired from an helicopter
using a light intensifier coupled to a CCD camera.

IV. EXPERIMENTS AND RESULTS

In this section, we discuss and compare the efficiency of

the proposed approach with regards to the noise estimation

and the blind image denoising. For the sake of replicability, a

Matlab implementation for the automatic noise estimation and

its application to image and video denoising is available for

download at https://github.com/csutour/RNLF.

Figure 1 illustrates the noise estimation process, and Fig. 2

shows the denoising results of an image corrupted with sim-

ulated hybrid noise. On Fig. 2-a, the noise is assumed to

be Gaussian, so the result suffers from some artifacts due to

the fact that the noise variance should not be assumed to be

constant over the whole image. On Fig. 2-b, the polynomial

NLF is estimated and plugged into the denoising process while

on Fig. 2-c, the real noise parameters are used. The similar

results show the reliability of the estimation.

A. Comparison to state of the art

We validate the proposed approach with respect to the state

of the art algorithms that perform noise estimation and/or blind

denoising. Based on the database of 150 natural images1, we

generate a set of noisy images, either with Poisson-Gaussian

1http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/imagebase.html
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noise with low or high noise level or with a mixture of

Gaussian, Poisson and Gamma noise. We estimate the noise

parameters with the different estimators: the Gaussian-Cauchy

mixture model [4] which is the most general model, the PCA

method [6], the percentile method [7], and the Noise Clinic

estimation [19], that estimate frequency-dependent noise but

that we use here for the estimation of affine or hybrid noise,

the estimation based on the variance stabilization transform

(VST) [3] that applies only for Poisson-Gaussian noise, and

our algorithm that can estimate either a given model (e.g.,

affine) or a general second order one. Based on the knowledge

of the real noise parameters (a, b, c), we compute the mean

relative error

MRE(â, b, c) =
1

|I|

∑

f∈I

∣∣∣NLF(a,b,c)(f)−NLF
(â,b,c)

(f)
∣∣∣

NLF(a,b,c)(f)
,

where I is a discretization of the interval of image intensities.

The level of detection α as well as the block size W have also

been empirically optimized using this mean relative error.

Then we plug the estimated NLF parameters for each

method into the R-NLF algorithm, and we compute the

obtained PSNR. We also compare the denoising results to the

Noise-Clinic denoising algorithm [20] and to the results of the

R-NLF denoising algorithm using the true noise parameters

(so there is no noise estimation error in these cases). Table

I illustrates the estimation and denoising performance of the

suitable estimators for Poisson-Gaussian and hybrid noise.

Results show that our estimation method offers comparable

results to the Gaussian-Cauchy method, and that reliable noise

estimations offer good denoising performance.

B. Night vision application

The proposed blind denoising algorithm has been used

on night vision images. In order to improve night vision

for helicopter pilots, a light intensifier tube multiplies the

number of photons in order to artificially increase light, then

the output is coupled to a CCD (Charge Coupled Device)

camera and the images are projected onto the helmet’s visor

in order to provide a head-up display. However, the obtained

images suffer from heavy non-Gaussian noise. Using the blind

denoising algorithm, we can first estimate the unknown noise

level function then apply the adaptive denoising algorithm.

Results are displayed on Fig. 3.

V. CONCLUSION

We have developed a fully automatic blind denoising

method that relies on the estimation of the noise level function

and robust image denoising. The noise estimation is performed

using the non-parametric detection of homogeneous regions

based on Kendall’s τ coefficient between neighbors, then the

noise level function is estimated thanks to a L1-minimization.

Then the noise level function is directly re-injected into a

robust denoising algorithm based on an adaptive regularization

of the non-local means. This method can encompass a general

second order noise model, and results on synthetic images

show show the performance of both the noise estimation and

the denoising process. Furthermore, we provide a Matlab

implementation for an easy access to the developed tools.

Future work might lead to the study of a more general noise

model, that could also encompass spatially varying noise level

functions and spatially correlated noise.
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